Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2006_26_1_a14, author = {Dobrynin, Andrey and Mel'nikov, Leonid}, title = {Wiener index of generalized stars and their quadratic line graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {161--175}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/} }
TY - JOUR AU - Dobrynin, Andrey AU - Mel'nikov, Leonid TI - Wiener index of generalized stars and their quadratic line graphs JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 161 EP - 175 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/ LA - en ID - DMGT_2006_26_1_a14 ER -
Dobrynin, Andrey; Mel'nikov, Leonid. Wiener index of generalized stars and their quadratic line graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 161-175. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/
[1] A.T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983) 21-55, doi: 10.1007/BFb0111212.
[2] S.H. Bertz, Branching in graphs and molecules, Discrete Appl. Math. 19 (1988) 65-83, doi: 10.1016/0166-218X(88)90006-6.
[3] S.H. Bertz and W.F. Wright, The graph theory approach to synthetic analysis: definition and application of molecular complexity and synthetic complexity, Graph Theory Notes New York 35 (1998) 32-48.
[4] F. Buckley, Mean distance of line graphs, Congr. Numer. 32 (1981) 153-162.
[5] E.R. Canfield, R.W. Robinson and D.H. Rouvray, Determination of the Wiener molecular branching index for the general tree, J. Comput. Chem. 6 (1985) 598-609, doi: 10.1002/jcc.540060613.
[6] Chemical Graph Theory - Introduction and Fundamentals, D. Bonchev and D.H. Rouvray, eds. (Gordon Breach, New York, 1991).
[7] A.A. Dobrynin and I. Gutman, The Wiener index for trees and graphs of hexagonal systems, Diskretn. Anal. Issled. Oper. Ser. 2 5 (1998) 34-60, in Russian.
[8] A.A. Dobrynin, Distance of iterated line graphs, Graph Theory Notes New York 37 (1998) 8-9.
[9] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249, doi: 10.1023/A:1010767517079.
[10] A.A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294, doi: 10.1023/A:1016290123303.
[11] A.A. Dobrynin, I. Gutman and V. Jovasević, Bicyclic graphs and their line graphs with the same Wiener index, Diskretn. Anal. Issled. Oper. Ser. 2 4 (1997) 3-9, in Russian.
[12] A.A. Dobrynin and L.S. Mel'nikov, Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers, Appl. Math. Lett. 18 (2005) 307-312, doi: 10.1016/j.aml.2004.03.007.
[13] A.A. Dobrynin and L.S. Mel'nikov, Wiener index for graphs and their line graphs, Diskretn. Anal. Issled. Oper. Ser. 2 11 (2004) 25-44, in Russian.
[14] A.A. Dobrynin and L.S. Mel'nikov, Trees and their quadratic line graphs having the same Wiener index, MATCH Commun. Math. Comput. Chem. 50 (2004) 145-164.
[15] A.A. Dobrynin and L.S. Mel'nikov, Trees, quadratic line graphs and the Wiener index, Croat. Chem Acta 77 (2004) 477-480.
[16] A.A. Dobrynin and L.S. Mel'nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209-214.
[17] R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283-296.
[18] R.C. Entringer, Distance in graphs: trees, J. Combin. Math. Combin. Comput. 24 (1997) 65-84.
[19] I. Gutman, Distance of line graphs, Graph Theory Notes New York 31 (1996) 49-52.
[20] I. Gutman, V. Jovasević and A.A. Dobrynin, Smallest graphs for which the distance of the graph is equal to the distance of its line graph, Graph Theory Notes New York 33 (1997) 19.
[21] I. Gutman and L. Pavlović, More of distance of line graphs, Graph Theory Notes New York 33 (1997) 14-18.
[22] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986).
[23] I. Gutman, Y.N. Yeh, S.L. Lee and Y.L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651-661.
[24] I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci. 36 (1996) 541-543, doi: 10.1021/ci950143i.
[25] I. Gutman, L. Popović, B.K. Mishra, M. Kaunar, E. Estrada and N. Guevara, Application of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc. 62 (1997) 1025-1029.
[26] F. Harary, Graph Theory, (Addison Wesley, 1969).
[27] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities (Cambridge University Press: Cambridge, 1934, 2nd ed. 1988).
[28] S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: developments and applications, Croat. Chem. Acta 68 (1995) 105-129.
[29] J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984) 1-21, doi: 10.1002/jgt.3190080102.
[30] O.E. Polansky and D. Bonchev, The Wiener number of graphs. I. General theory and changes due to some graph operations, MATCH Commun. Math. Comput. Chem. 21 (1986) 133-186.
[31] D.H. Rouvray, Should we have designs on topological indices?, in: R.B. King, ed., Chemical Application of Topology and Graph Theory, (Elsevier, Amsterdam, 1983) 159-177.
[32] N. Trinajstić, Chemical Graph Theory (CRC Press: Boca Raton, 1983; 2nd ed. 1992).
[33] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.