Wiener index of generalized stars and their quadratic line graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 161-175

Voir la notice de l'article provenant de la source Library of Science

The Wiener index, W, is the sum of distances between all pairs of vertices in a graph G. The quadratic line graph is defined as L(L(G)), where L(G) is the line graph of G. A generalized star S is a tree consisting of Δ ≥ 3 paths with the unique common endvertex. A relation between the Wiener index of S and of its quadratic graph is presented. It is shown that generalized stars having the property W(S) = W(L(L(S)) exist only for 4 ≤ Δ ≤ 6. Infinite families of generalized stars with this property are constructed.
Keywords: distance in a graph, Wiener index, star, iterated line graph
@article{DMGT_2006_26_1_a14,
     author = {Dobrynin, Andrey and Mel'nikov, Leonid},
     title = {Wiener index of generalized stars and their quadratic line graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/}
}
TY  - JOUR
AU  - Dobrynin, Andrey
AU  - Mel'nikov, Leonid
TI  - Wiener index of generalized stars and their quadratic line graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 161
EP  - 175
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/
LA  - en
ID  - DMGT_2006_26_1_a14
ER  - 
%0 Journal Article
%A Dobrynin, Andrey
%A Mel'nikov, Leonid
%T Wiener index of generalized stars and their quadratic line graphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 161-175
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/
%G en
%F DMGT_2006_26_1_a14
Dobrynin, Andrey; Mel'nikov, Leonid. Wiener index of generalized stars and their quadratic line graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 161-175. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/