Wiener index of generalized stars and their quadratic line graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 161-175.

Voir la notice de l'article provenant de la source Library of Science

The Wiener index, W, is the sum of distances between all pairs of vertices in a graph G. The quadratic line graph is defined as L(L(G)), where L(G) is the line graph of G. A generalized star S is a tree consisting of Δ ≥ 3 paths with the unique common endvertex. A relation between the Wiener index of S and of its quadratic graph is presented. It is shown that generalized stars having the property W(S) = W(L(L(S)) exist only for 4 ≤ Δ ≤ 6. Infinite families of generalized stars with this property are constructed.
Keywords: distance in a graph, Wiener index, star, iterated line graph
@article{DMGT_2006_26_1_a14,
     author = {Dobrynin, Andrey and Mel'nikov, Leonid},
     title = {Wiener index of generalized stars and their quadratic line graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {161--175},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/}
}
TY  - JOUR
AU  - Dobrynin, Andrey
AU  - Mel'nikov, Leonid
TI  - Wiener index of generalized stars and their quadratic line graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 161
EP  - 175
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/
LA  - en
ID  - DMGT_2006_26_1_a14
ER  - 
%0 Journal Article
%A Dobrynin, Andrey
%A Mel'nikov, Leonid
%T Wiener index of generalized stars and their quadratic line graphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 161-175
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/
%G en
%F DMGT_2006_26_1_a14
Dobrynin, Andrey; Mel'nikov, Leonid. Wiener index of generalized stars and their quadratic line graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 161-175. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a14/

[1] A.T. Balaban, I. Motoc, D. Bonchev and O. Mekenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114 (1983) 21-55, doi: 10.1007/BFb0111212.

[2] S.H. Bertz, Branching in graphs and molecules, Discrete Appl. Math. 19 (1988) 65-83, doi: 10.1016/0166-218X(88)90006-6.

[3] S.H. Bertz and W.F. Wright, The graph theory approach to synthetic analysis: definition and application of molecular complexity and synthetic complexity, Graph Theory Notes New York 35 (1998) 32-48.

[4] F. Buckley, Mean distance of line graphs, Congr. Numer. 32 (1981) 153-162.

[5] E.R. Canfield, R.W. Robinson and D.H. Rouvray, Determination of the Wiener molecular branching index for the general tree, J. Comput. Chem. 6 (1985) 598-609, doi: 10.1002/jcc.540060613.

[6] Chemical Graph Theory - Introduction and Fundamentals, D. Bonchev and D.H. Rouvray, eds. (Gordon Breach, New York, 1991).

[7] A.A. Dobrynin and I. Gutman, The Wiener index for trees and graphs of hexagonal systems, Diskretn. Anal. Issled. Oper. Ser. 2 5 (1998) 34-60, in Russian.

[8] A.A. Dobrynin, Distance of iterated line graphs, Graph Theory Notes New York 37 (1998) 8-9.

[9] A.A. Dobrynin, R. Entringer and I. Gutman, Wiener index for trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249, doi: 10.1023/A:1010767517079.

[10] A.A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294, doi: 10.1023/A:1016290123303.

[11] A.A. Dobrynin, I. Gutman and V. Jovasević, Bicyclic graphs and their line graphs with the same Wiener index, Diskretn. Anal. Issled. Oper. Ser. 2 4 (1997) 3-9, in Russian.

[12] A.A. Dobrynin and L.S. Mel'nikov, Wiener index for graphs and their line graphs with arbitrary large cyclomatic numbers, Appl. Math. Lett. 18 (2005) 307-312, doi: 10.1016/j.aml.2004.03.007.

[13] A.A. Dobrynin and L.S. Mel'nikov, Wiener index for graphs and their line graphs, Diskretn. Anal. Issled. Oper. Ser. 2 11 (2004) 25-44, in Russian.

[14] A.A. Dobrynin and L.S. Mel'nikov, Trees and their quadratic line graphs having the same Wiener index, MATCH Commun. Math. Comput. Chem. 50 (2004) 145-164.

[15] A.A. Dobrynin and L.S. Mel'nikov, Trees, quadratic line graphs and the Wiener index, Croat. Chem Acta 77 (2004) 477-480.

[16] A.A. Dobrynin and L.S. Mel'nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209-214.

[17] R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283-296.

[18] R.C. Entringer, Distance in graphs: trees, J. Combin. Math. Combin. Comput. 24 (1997) 65-84.

[19] I. Gutman, Distance of line graphs, Graph Theory Notes New York 31 (1996) 49-52.

[20] I. Gutman, V. Jovasević and A.A. Dobrynin, Smallest graphs for which the distance of the graph is equal to the distance of its line graph, Graph Theory Notes New York 33 (1997) 19.

[21] I. Gutman and L. Pavlović, More of distance of line graphs, Graph Theory Notes New York 33 (1997) 14-18.

[22] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986).

[23] I. Gutman, Y.N. Yeh, S.L. Lee and Y.L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) 651-661.

[24] I. Gutman and E. Estrada, Topological indices based on the line graph of the molecular graph, J. Chem. Inf. Comput. Sci. 36 (1996) 541-543, doi: 10.1021/ci950143i.

[25] I. Gutman, L. Popović, B.K. Mishra, M. Kaunar, E. Estrada and N. Guevara, Application of line graphs in physical chemistry. Predicting surface tension of alkanes, J. Serb. Chem. Soc. 62 (1997) 1025-1029.

[26] F. Harary, Graph Theory, (Addison Wesley, 1969).

[27] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities (Cambridge University Press: Cambridge, 1934, 2nd ed. 1988).

[28] S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: developments and applications, Croat. Chem. Acta 68 (1995) 105-129.

[29] J. Plesnik, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984) 1-21, doi: 10.1002/jgt.3190080102.

[30] O.E. Polansky and D. Bonchev, The Wiener number of graphs. I. General theory and changes due to some graph operations, MATCH Commun. Math. Comput. Chem. 21 (1986) 133-186.

[31] D.H. Rouvray, Should we have designs on topological indices?, in: R.B. King, ed., Chemical Application of Topology and Graph Theory, (Elsevier, Amsterdam, 1983) 159-177.

[32] N. Trinajstić, Chemical Graph Theory (CRC Press: Boca Raton, 1983; 2nd ed. 1992).

[33] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.