A prime factor theorem for a generalized direct product
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 135-140.

Voir la notice de l'article provenant de la source Library of Science

We introduce the concept of neighborhood systems as a generalization of directed, reflexive graphs and show that the prime factorization of neighborhood systems with respect to the the direct product is unique under the condition that they satisfy an appropriate notion of thinness.
Keywords: products, set systems, prime factor theorem
@article{DMGT_2006_26_1_a11,
     author = {Imrich, Wilfried and Stadler, Peter},
     title = {A prime factor theorem for a generalized direct product},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {135--140},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/}
}
TY  - JOUR
AU  - Imrich, Wilfried
AU  - Stadler, Peter
TI  - A prime factor theorem for a generalized direct product
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 135
EP  - 140
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/
LA  - en
ID  - DMGT_2006_26_1_a11
ER  - 
%0 Journal Article
%A Imrich, Wilfried
%A Stadler, Peter
%T A prime factor theorem for a generalized direct product
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 135-140
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/
%G en
%F DMGT_2006_26_1_a11
Imrich, Wilfried; Stadler, Peter. A prime factor theorem for a generalized direct product. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/

[1] E. Cech, Topological spaces, Revised edition by Z. Frolí k and M. Katetov, Scientific editor, V. Pták. Editor of the English translation, Charles O. Junge (Publishing House of the Czechoslovak Academy of Sciences, Prague, 1966).

[2] W. Fontana and P. Schuster, Continuity in Evolution: On the Nature of Transitions, Science 280 (1998) 1451-1455, doi: 10.1126/science.280.5368.1451.

[3] P.C. Hammer, Extended topology: Continuity. I, Portugal. Math. 23 (1964) 77-93.

[4] W. Imrich and S. Klavžar, Product Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, (Wiley-Interscience, New York, 2000) Structure and recognition, With a foreword by P. Winkler.

[5] R. McKenzie, Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971) 59-101.

[6] B.M.R. Stadler and P.F. Stadler, Generalized topological spaces in evolutionary theory and combinatorial chemistry, J. Chem. Inf. Comput. Sci. 42 (2002) 577-585, doi: 10.1021/ci0100898.

[7] B.M.R. Stadler, P.F. Stadler, G. Wagner and W. Fontana, The topology of the possible: Formal spaces underlying patterns of evolutionary change, J. Theor. Biol. 213 (2001) 241-274, doi: 10.1006/jtbi.2001.2423.

[8] G. Wagner and P.F. Stadler, Quasi-independence, homology and the unity of type: A topological theory of characters, J. Theor. Biol. 220 (2003) 505-527, doi: 10.1006/jtbi.2003.3150.