A prime factor theorem for a generalized direct product
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 135-140

Voir la notice de l'article provenant de la source Library of Science

We introduce the concept of neighborhood systems as a generalization of directed, reflexive graphs and show that the prime factorization of neighborhood systems with respect to the the direct product is unique under the condition that they satisfy an appropriate notion of thinness.
Keywords: products, set systems, prime factor theorem
@article{DMGT_2006_26_1_a11,
     author = {Imrich, Wilfried and Stadler, Peter},
     title = {A prime factor theorem for a generalized direct product},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {135--140},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/}
}
TY  - JOUR
AU  - Imrich, Wilfried
AU  - Stadler, Peter
TI  - A prime factor theorem for a generalized direct product
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 135
EP  - 140
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/
LA  - en
ID  - DMGT_2006_26_1_a11
ER  - 
%0 Journal Article
%A Imrich, Wilfried
%A Stadler, Peter
%T A prime factor theorem for a generalized direct product
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 135-140
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/
%G en
%F DMGT_2006_26_1_a11
Imrich, Wilfried; Stadler, Peter. A prime factor theorem for a generalized direct product. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 135-140. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a11/