An anti-Ramsey theorem on edge-cuts
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 19-21
Voir la notice de l'article provenant de la source Library of Science
Let G = (V(G), E(G)) be a connected multigraph and let h(G) be the minimum integer k such that for every edge-colouring of G, using exactly k colours, there is at least one edge-cut of G all of whose edges receive different colours. In this note it is proved that if G has at least 2 vertices and has no bridges, then h(G) = |E(G)| -|V(G)| + 2.
Keywords:
anti-Ramsey, totally multicoloured, edge-cuts
@article{DMGT_2006_26_1_a1,
author = {Montellano-Ballesteros, Juan},
title = {An {anti-Ramsey} theorem on edge-cuts},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {19--21},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a1/}
}
Montellano-Ballesteros, Juan. An anti-Ramsey theorem on edge-cuts. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 19-21. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a1/