An anti-Ramsey theorem on edge-cuts
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 19-21.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V(G), E(G)) be a connected multigraph and let h(G) be the minimum integer k such that for every edge-colouring of G, using exactly k colours, there is at least one edge-cut of G all of whose edges receive different colours. In this note it is proved that if G has at least 2 vertices and has no bridges, then h(G) = |E(G)| -|V(G)| + 2.
Keywords: anti-Ramsey, totally multicoloured, edge-cuts
@article{DMGT_2006_26_1_a1,
     author = {Montellano-Ballesteros, Juan},
     title = {An {anti-Ramsey} theorem on edge-cuts},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {19--21},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a1/}
}
TY  - JOUR
AU  - Montellano-Ballesteros, Juan
TI  - An anti-Ramsey theorem on edge-cuts
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 19
EP  - 21
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a1/
LA  - en
ID  - DMGT_2006_26_1_a1
ER  - 
%0 Journal Article
%A Montellano-Ballesteros, Juan
%T An anti-Ramsey theorem on edge-cuts
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 19-21
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a1/
%G en
%F DMGT_2006_26_1_a1
Montellano-Ballesteros, Juan. An anti-Ramsey theorem on edge-cuts. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 19-21. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a1/

[1] N. Alon, On a Conjecture of Erdös, Simonovits and Sós Concerning Anti-Ramsey Theorems, J. Graph Theory 7 (1983) 91-94, doi: 10.1002/jgt.3190070112.

[2] P. Erdös, M. Simonovits and V.T. Sós, Anti-Ramsey Theorems, in: Infinite and finite sets (Keszthely, Hungary 1973), Colloquia Mathematica Societatis János Bolyai, 10, (North-Holland, Amsterdam, 1975) 633-643.

[3] P. Hell and J.J. Montellano-Ballesteros, Polychromatic Cliques, Discrete Math. 285 (2004) 319-322, doi: 10.1016/j.disc.2004.02.013.

[4] T. Jiang, Edge-colorings with no Large Polychromatic Stars, Graphs and Combinatorics 18 (2002) 303-308, doi: 10.1007/s003730200022.

[5] J.J. Montellano-Ballesteros, On Totally Multicolored Stars, to appear J. Graph Theory.

[6] J.J. Montellano-Ballesteros and V. Neumann-Lara, An Anti-Ramsey Theorem, Combinatorica 22 (2002) 445-449, doi: 10.1007/s004930200023.

[7] M. Simonovits and V.T. Sós, On Restricted Colourings of Kₙ, Combinatorica 4 (1984) 101-110, doi: 10.1007/BF02579162.

[8] H. Whitney, Non-separable and planar graphs, Trans. Amer. Math. Soc. 34 (1932) 339-362, doi: 10.1090/S0002-9947-1932-1501641-2.