Algorithmic aspects of total-subdomination in graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 5-18
Voir la notice de l'article provenant de la source Library of Science
Let G = (V,E) be a graph and let k ∈ Z⁺. A total k-subdominating function is a function f: V → -1,1 such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V) over all total k-subdominating functions f of G where f(V) denotes the sum of the function values assigned to the vertices under f. In this paper, we present a cubic time algorithm to compute the total k-subdomination number of a tree and also show that the associated decision problem is NP-complete for general graphs.
Keywords:
total k-subdomination, algorithm, tree
@article{DMGT_2006_26_1_a0,
author = {Harris, Laura and Hattingh, Johannes and Henning, Michael},
title = {Algorithmic aspects of total-subdomination in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {5--18},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/}
}
TY - JOUR AU - Harris, Laura AU - Hattingh, Johannes AU - Henning, Michael TI - Algorithmic aspects of total-subdomination in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2006 SP - 5 EP - 18 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/ LA - en ID - DMGT_2006_26_1_a0 ER -
Harris, Laura; Hattingh, Johannes; Henning, Michael. Algorithmic aspects of total-subdomination in graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/