Algorithmic aspects of total-subdomination in graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 5-18.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph and let k ∈ Z⁺. A total k-subdominating function is a function f: V → -1,1 such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V) over all total k-subdominating functions f of G where f(V) denotes the sum of the function values assigned to the vertices under f. In this paper, we present a cubic time algorithm to compute the total k-subdomination number of a tree and also show that the associated decision problem is NP-complete for general graphs.
Keywords: total k-subdomination, algorithm, tree
@article{DMGT_2006_26_1_a0,
     author = {Harris, Laura and Hattingh, Johannes and Henning, Michael},
     title = {Algorithmic aspects of total-subdomination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/}
}
TY  - JOUR
AU  - Harris, Laura
AU  - Hattingh, Johannes
AU  - Henning, Michael
TI  - Algorithmic aspects of total-subdomination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 5
EP  - 18
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/
LA  - en
ID  - DMGT_2006_26_1_a0
ER  - 
%0 Journal Article
%A Harris, Laura
%A Hattingh, Johannes
%A Henning, Michael
%T Algorithmic aspects of total-subdomination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 5-18
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/
%G en
%F DMGT_2006_26_1_a0
Harris, Laura; Hattingh, Johannes; Henning, Michael. Algorithmic aspects of total-subdomination in graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/

[1] L.W. Beineke and M.A. Henning, Opinion function on trees, Discrete Math. 167-168 (1997) 127-139, doi: 10.1016/S0012-365X(96)00221-X.

[2] I. Broere, J.H. Hattingh, M.A. Henning and A.A. McRae, Majority domination in graphs, Discrete Math. 138 (1995) 125-135, doi: 10.1016/0012-365X(94)00194-N.

[3] G. Chang, S.C. Liaw and H.G. Yeh, k-subdomination in graphs, Discrete Applied Math. 120 (2002) 55-60, doi: 10.1016/S0166-218X(01)00280-3.

[4] E.J. Cockayne and C. Mynhardt, On a generalisation of signed dominating functions of graphs, Ars Combin. 43 (1996) 235-245.

[5] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics and Applications, John Wiley Sons, Inc. 1 (1995) 311-322.

[6] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996) 287-293, doi: 10.1016/0012-365X(96)00026-X.

[7] Z. Furedi and D. Mubayi, Signed domination in regular graphs and set-systems, J. Combin. Theory (B) 76 (1999) 223-239, doi: 10.1006/jctb.1999.1905.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979).

[9] L. Harris and J.H. Hattingh, The algorithmic complexity of certain functional variations of total domination in graphs, Australasian J. Combin. 29 (2004) 143-156.

[10] L. Harris, J.H. Hattingh and M.A. Henning, Total k-subdominating functions on graphs, submitted for publication.

[11] J.H. Hattingh, M.A. Henning and P.J. Slater, The algorithmic complexity of signed domination in graphs, Australasian J. Combin. 12 (1995) 101-112.

[12] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996) 263-271.

[13] M.A. Henning, Dominating functions in graphs, Domination in Graphs: Volume II (Marcel-Dekker, Inc., 1998) 31-62.

[14] M.A. Henning, Signed total domination in graphs, to appear in Discrete Math.

[15] M.A. Henning and H. Hind, Strict open majority functions in Graphs, J. Graph Theory 28 (1998) 49-56, doi: 10.1002/(SICI)1097-0118(199805)28:149::AID-JGT6>3.0.CO;2-F

[16] M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. 158 (1996) 87-98, doi: 10.1016/0012-365X(96)00025-8.

[17] P. Lam and B. Wei, On the total domination number of graphs, submitted for publication.

[18] J. Matousek, On the signed domination in graphs, Combinatoria 20 (2000) 103-108, doi: 10.1007/s004930070034.

[19] X. Yang, X. Huang and Q. Hou, On graphs with equal signed and majority domination number, manuscript (personal communication by X. Yang).

[20] H. Yeh and G.J. Chang, Algorithmic aspects of majority domination, Taiwanese J. Math. 1 (1997) 343-350.

[21] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158 (1996) 249-255, doi: 10.1016/0012-365X(94)00324-C.

[22] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225-229, doi: 10.1023/A:1013782511179.

[23] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999) 295-298, doi: 10.1016/S0012-365X(98)00189-7.