Algorithmic aspects of total-subdomination in graphs
Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 5-18

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph and let k ∈ Z⁺. A total k-subdominating function is a function f: V → -1,1 such that for at least k vertices v of G, the sum of the function values of f in the open neighborhood of v is positive. The total k-subdomination number of G is the minimum value of f(V) over all total k-subdominating functions f of G where f(V) denotes the sum of the function values assigned to the vertices under f. In this paper, we present a cubic time algorithm to compute the total k-subdomination number of a tree and also show that the associated decision problem is NP-complete for general graphs.
Keywords: total k-subdomination, algorithm, tree
@article{DMGT_2006_26_1_a0,
     author = {Harris, Laura and Hattingh, Johannes and Henning, Michael},
     title = {Algorithmic aspects of total-subdomination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--18},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/}
}
TY  - JOUR
AU  - Harris, Laura
AU  - Hattingh, Johannes
AU  - Henning, Michael
TI  - Algorithmic aspects of total-subdomination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2006
SP  - 5
EP  - 18
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/
LA  - en
ID  - DMGT_2006_26_1_a0
ER  - 
%0 Journal Article
%A Harris, Laura
%A Hattingh, Johannes
%A Henning, Michael
%T Algorithmic aspects of total-subdomination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2006
%P 5-18
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/
%G en
%F DMGT_2006_26_1_a0
Harris, Laura; Hattingh, Johannes; Henning, Michael. Algorithmic aspects of total-subdomination in graphs. Discussiones Mathematicae. Graph Theory, Tome 26 (2006) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/DMGT_2006_26_1_a0/