Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_3_a8, author = {Pike, David}, title = {Hamilton decompositions of line graphs of some bipartite graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {303--310}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a8/} }
Pike, David. Hamilton decompositions of line graphs of some bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 303-310. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a8/
[1] J.C. Bermond, Problem 97, Discrete Math. 71 (1988) 275, doi: 10.1016/0012-365X(88)90107-0.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland Publishing Company, New York, 1979).
[3] K. Heinrich and H. Verrall, A Construction of a perfect set of Euler tours of $K_{2k+1}$, J. Combin. Designs 5 (1997) 215-230, doi: 10.1002/(SICI)1520-6610(1997)5:3215::AID-JCD5>3.0.CO;2-I
[4] F. Jaeger, The 1-factorization of some line-graphs, Discrete Math. 46 (1983) 89-92, doi: 10.1016/0012-365X(83)90274-1.
[5] A. Kotzig, Z teorie konecných pravidelných grafov tretieho a stvrtého stupna, Casopis Pest. Mat. 82 (1957) 76-92.
[6] P. Martin, Cycles Hamiltoniens dans les graphes 4-réguliers 4-connexes, Aequationes Math. 14 (1976) 37-40, doi: 10.1007/BF01836203.
[7] A. Muthusamy and P. Paulraja, Hamilton cycle decompositions of line graphs and a conjecture of Bermond, J. Combin. Theory (B) 64 (1995) 1-16, doi: 10.1006/jctb.1995.1024.
[8] B.R. Myers, Hamiltonian factorization of the product of a complete graph with itself, Networks 2 (1972) 1-9, doi: 10.1002/net.3230020102.
[9] D.A. Pike, Hamilton decompositions of some line graphs, J. Graph Theory 20 (1995) 473-479, doi: 10.1002/jgt.3190200411.
[10] D.A. Pike, Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree, Australasian J. Combin. 12 (1995) 291-294.
[11] H. Verrall, A Construction of a perfect set of Euler tours of $K_{2k} + I$, J. Combin. Designs 6 (1998) 183-211, doi: 10.1002/(SICI)1520-6610(1998)6:3183::AID-JCD2>3.0.CO;2-B
[12] S. Zhan, Circuits and Cycle Decompositions (Ph.D. thesis, Simon Fraser University, 1992).