Hamilton decompositions of line graphs of some bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 303-310.

Voir la notice de l'article provenant de la source Library of Science

Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).
Keywords: Hamilton cycles, graph decompositions, line graphs
@article{DMGT_2005_25_3_a8,
     author = {Pike, David},
     title = {Hamilton decompositions of line graphs of some bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {303--310},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a8/}
}
TY  - JOUR
AU  - Pike, David
TI  - Hamilton decompositions of line graphs of some bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 303
EP  - 310
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a8/
LA  - en
ID  - DMGT_2005_25_3_a8
ER  - 
%0 Journal Article
%A Pike, David
%T Hamilton decompositions of line graphs of some bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 303-310
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a8/
%G en
%F DMGT_2005_25_3_a8
Pike, David. Hamilton decompositions of line graphs of some bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 303-310. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a8/

[1] J.C. Bermond, Problem 97, Discrete Math. 71 (1988) 275, doi: 10.1016/0012-365X(88)90107-0.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland Publishing Company, New York, 1979).

[3] K. Heinrich and H. Verrall, A Construction of a perfect set of Euler tours of $K_{2k+1}$, J. Combin. Designs 5 (1997) 215-230, doi: 10.1002/(SICI)1520-6610(1997)5:3215::AID-JCD5>3.0.CO;2-I

[4] F. Jaeger, The 1-factorization of some line-graphs, Discrete Math. 46 (1983) 89-92, doi: 10.1016/0012-365X(83)90274-1.

[5] A. Kotzig, Z teorie konecných pravidelných grafov tretieho a stvrtého stupna, Casopis Pest. Mat. 82 (1957) 76-92.

[6] P. Martin, Cycles Hamiltoniens dans les graphes 4-réguliers 4-connexes, Aequationes Math. 14 (1976) 37-40, doi: 10.1007/BF01836203.

[7] A. Muthusamy and P. Paulraja, Hamilton cycle decompositions of line graphs and a conjecture of Bermond, J. Combin. Theory (B) 64 (1995) 1-16, doi: 10.1006/jctb.1995.1024.

[8] B.R. Myers, Hamiltonian factorization of the product of a complete graph with itself, Networks 2 (1972) 1-9, doi: 10.1002/net.3230020102.

[9] D.A. Pike, Hamilton decompositions of some line graphs, J. Graph Theory 20 (1995) 473-479, doi: 10.1002/jgt.3190200411.

[10] D.A. Pike, Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree, Australasian J. Combin. 12 (1995) 291-294.

[11] H. Verrall, A Construction of a perfect set of Euler tours of $K_{2k} + I$, J. Combin. Designs 6 (1998) 183-211, doi: 10.1002/(SICI)1520-6610(1998)6:3183::AID-JCD2>3.0.CO;2-B

[12] S. Zhan, Circuits and Cycle Decompositions (Ph.D. thesis, Simon Fraser University, 1992).