Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_3_a3, author = {Pedersen, Anders}, title = {Domination and leaf density in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {251--259}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a3/} }
Pedersen, Anders. Domination and leaf density in graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 251-259. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a3/
[1] R.C. Brigham, J.R. Carrington and R.P. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000) 81-95.
[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
[3] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079.
[4] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness (Freeman, New York, 1979).
[5] B.L. Hartnell and P.D. Vestergaard, Partitions and domination in a graph, J. Combin. Math. Combin. Comput. 46 (2003) 113-128.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, Inc., 1998).
[7] A.M. Henning and P.D. Vestergaard, Domination in partitioned graphs with minimum degree two (Manuscript, 2002).
[8] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ., 1962).
[9] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104.
[10] S.M. Seager, Partition dominations of graphs of minimum degree 2, Congr. Numer. 132 (1998) 85-91.
[11] Z. Tuza and P.D. Vestergaard, Domination in partitioned graphs, Discuss. Math. Graph Theory 22 (2002) 199-210, doi: 10.7151/dmgt.1169.