An upper bound of the basis number of the strong product of graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 391-406.

Voir la notice de l'article provenant de la source Library of Science

The basis number of a graph G is defined to be the least integer d such that there is a basis B of the cycle space of G such that each edge of G is contained in at most d members of B. In this paper we give an upper bound of the basis number of the strong product of a graph with a bipartite graph and we show that this upper bound is the best possible.
Keywords: basis number, cycle space, strong product
@article{DMGT_2005_25_3_a15,
     author = {Jaradat, Mohammed},
     title = {An upper bound of the basis number of the strong product of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {391--406},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a15/}
}
TY  - JOUR
AU  - Jaradat, Mohammed
TI  - An upper bound of the basis number of the strong product of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 391
EP  - 406
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a15/
LA  - en
ID  - DMGT_2005_25_3_a15
ER  - 
%0 Journal Article
%A Jaradat, Mohammed
%T An upper bound of the basis number of the strong product of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 391-406
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a15/
%G en
%F DMGT_2005_25_3_a15
Jaradat, Mohammed. An upper bound of the basis number of the strong product of graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 391-406. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a15/

[1] A.A. Ali, The basis number of complete multipartite graphs, Ars Combin. 28 (1989) 41-49.

[2] A.A. Ali and G.T. Marougi, The basis number of the strong product of graphs, Mu'tah Lil-Buhooth Wa Al-Dirasat 7 (1) (1992) 211-222.

[3] A.A. Ali and G.T. Marougi, The basis number of cartesian product of some graphs, J. Indian Math. Soc. 58 (1992) 123-134.

[4] A.S. Alsardary, An upper bound on the basis number of the powers of the complete graphs, Czechoslovak Math. J. 51 (126) (2001) 231-238, doi: 10.1023/A:1013734628017.

[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (America Elsevier Publishing Co. Inc., New York, 1976).

[6] R. Diestel, Graph Theory, Graduate Texts in Mathematics, 173 (Springer-Verlag, New York, 1997).

[7] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (Wiley, New York, 2000).

[8] W. Imrich and P. Stadler, Minimum cycle bases of product graphs, Australas. J. Combin. 26 (2002) 233-244.

[9] M.M.M. Jaradat, On the basis number of the direct product of graphs, Australas. J. Combin. 27 (2003) 293-306.

[10] M.M.M. Jaradat, The basis number of the direct product of a theta graph and a path, Ars Combin. 75 (2005) 105-111.

[11] P.K. Jha, Hamiltonian decompositions of product of cycles, Indian J. Pure Appl. Math. 23 (1992) 723-729.

[12] P.K. Jha and G. Slutzki, A note on outerplanarity of product graphs, Zastos. Mat. 21 (1993) 537-544.

[13] S. MacLane, A combinatorial condition for planar graphs, Fundamenta Math. 28 (1937) 22-32.

[14] G. Sabidussi, Graph multiplication, Math. Z. 72 (1960) 446-457, doi: 10.1007/BF01162967.

[15] E.F. Schmeichel, The basis number of a graph, J. Combin. Theory (B) 30 (1981) 123-129, doi: 10.1016/0095-8956(81)90057-5.

[16] P.M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47-52, doi: 10.1090/S0002-9939-1962-0133816-6.