Decompositions into two paths
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 325-329.

Voir la notice de l'article provenant de la source Library of Science

It is proved that a connected multigraph G which is the union of two edge-disjoint paths has another decomposition into two paths with the same set, U, of endvertices provided that the multigraph is neither a path nor cycle. Moreover, then the number of such decompositions is proved to be even unless the number is three, which occurs exactly if G is a tree homeomorphic with graph of either symbol + or ⊥. A multigraph on n vertices with exactly two traceable pairs is constructed for each n ≥ 3. The Thomason result on hamiltonian pairs is used and is proved to be sharp.
Keywords: graph, multigraph, path decomposition, hamiltonian decomposition, traceable
@article{DMGT_2005_25_3_a10,
     author = {Skupie\'n, Zdzis{\l}aw},
     title = {Decompositions into two paths},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {325--329},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a10/}
}
TY  - JOUR
AU  - Skupień, Zdzisław
TI  - Decompositions into two paths
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 325
EP  - 329
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a10/
LA  - en
ID  - DMGT_2005_25_3_a10
ER  - 
%0 Journal Article
%A Skupień, Zdzisław
%T Decompositions into two paths
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 325-329
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a10/
%G en
%F DMGT_2005_25_3_a10
Skupień, Zdzisław. Decompositions into two paths. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 325-329. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a10/

[1] http://listserv.nodak.edu/archives/graphnet.html.

[2] S. Lin, Computer solutions of the traveling salesman problem, Bell System Tech. J. 44 (1965) 2245-2269.

[3] Z. Skupień, Sparse hamiltonian 2-decompositions together with numerous Hamilton cycles, submitted.

[4] N.J.A. Sloane, Hamiltonian cycles in a graph of degree four, J. Combin. Theory 6 (1969) 311-312, doi: 10.1016/S0021-9800(69)80093-1.

[5] K.W. Smith, Two-path conjecture, in: [1], Feb. 16, 2001.

[6] A.G. Thomason, Hamiltonian cycles and uniquely edge colourable graphs, in: B. Bollobás, ed., Advances in Graph Theory (Proc. Cambridge Combin. Conf., 1977), Ann. Discrete Math. 3 (1978) (North-Holland, Amsterdam, 1978) pp. 259-268.

[7] D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 1996).

[8] D. West, in: [1], Feb. 20, 2001.