Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_3_a0, author = {Caro, Yair and Klostermeyer, William and Yuster, Raphael}, title = {Connected odd dominating sets in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {225--239}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a0/} }
TY - JOUR AU - Caro, Yair AU - Klostermeyer, William AU - Yuster, Raphael TI - Connected odd dominating sets in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2005 SP - 225 EP - 239 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a0/ LA - en ID - DMGT_2005_25_3_a0 ER -
Caro, Yair; Klostermeyer, William; Yuster, Raphael. Connected odd dominating sets in graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 225-239. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a0/
[1] A. Amin, L. Clark and P. Slater, Parity dimension for graphs, Discrete Math. 187 (1998) 1-17, doi: 10.1016/S0012-365X(97)00242-2.
[2] A. Amin and P. Slater, Neighborhood domination with parity restriction in graphs, Congr. Numer. 91 (1992) 19-30.
[3] A. Amin and P. Slater, All parity realizable trees, J. Combin. Math. and Combin. Comput. 20 (1996) 53-63.
[4] Y. Caro, Simple proofs to three parity theorems, Ars Combin. 42 (1996) 175-180.
[5] Y. Caro and W. Klostermeyer, The odd domination number of a graph, J. Combin. Math. Combin. Comput. 44 (2003) 65-84.
[6] Y. Caro, W. Klostermeyer and J. Goldwasser, Odd and residue domination numbers of a graph, Discuss. Math. Graph Theory 21 (2001) 119-136, doi: 10.7151/dmgt.1137.
[7] M. Conlon, M. Falidas, M. Forde, J. Kennedy, S. McIlwaine and J. Stern, Inversion numbers of graphs, Graph Theory Notes of New York XXXVII (1999) 43-49.
[8] R. Cowen, S. Hechler, J. Kennedy and A. Ryba, Inversion and neighborhood inversion in graphs, Graph Theory Notes of New York XXXVII (1999) 38-42.
[9] J. Goldwasser, W. Klostermeyer and G. Trapp, Characterizing switch-setting problems, Linear and Multilinear Algebra 43 (1997) 121-135, doi: 10.1080/03081089708818520.
[10] J. Goldwasser and W. Klostermeyer, Maximization versions of 'Lights Out' games in grids and graphs, Congr. Numer. 126 (1997) 99-111.
[11] J. Goldwasser, W. Klostermeyer and H. Ware, Fibonacci polynomials and parity domination in grid graphs, Graphs and Combinatorics 18 (2002) 271-283, doi: 10.1007/s003730200020.
[12] M. Halldorsson, J. Kratochvil and J. Telle, Mod-2 independence and domination in graphs, in: Proceedings Workshop on Graph-Theoretic Concepts in Computer Science '99, Ascona, Switzerland (Springer-Verlag, Lecture Notes in Computer Science, 1999) 101-109.
[13] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[14] K. Sutner, Linear cellular automata and the Garden-of-Eden, The Mathematical Intelligencer 11 (2) (1989) 49-53, doi: 10.1007/BF03023823.