Connected odd dominating sets in graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 225-239.

Voir la notice de l'article provenant de la source Library of Science

An odd dominating set of a simple, undirected graph G = (V,E) is a set of vertices D ⊆ V such that |N[v] ∩ D| ≡ 1 mod 2 for all vertices v ∈ V. It is known that every graph has an odd dominating set. In this paper we consider the concept of connected odd dominating sets. We prove that the problem of deciding if a graph has a connected odd dominating set is NP-complete. We also determine the existence or non-existence of such sets in several classes of graphs. Among other results, we prove there are only 15 grid graphs that have a connected odd dominating set.
Keywords: dominating set, odd dominating set
@article{DMGT_2005_25_3_a0,
     author = {Caro, Yair and Klostermeyer, William and Yuster, Raphael},
     title = {Connected odd dominating sets in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {225--239},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a0/}
}
TY  - JOUR
AU  - Caro, Yair
AU  - Klostermeyer, William
AU  - Yuster, Raphael
TI  - Connected odd dominating sets in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 225
EP  - 239
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a0/
LA  - en
ID  - DMGT_2005_25_3_a0
ER  - 
%0 Journal Article
%A Caro, Yair
%A Klostermeyer, William
%A Yuster, Raphael
%T Connected odd dominating sets in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 225-239
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a0/
%G en
%F DMGT_2005_25_3_a0
Caro, Yair; Klostermeyer, William; Yuster, Raphael. Connected odd dominating sets in graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 3, pp. 225-239. http://geodesic.mathdoc.fr/item/DMGT_2005_25_3_a0/

[1] A. Amin, L. Clark and P. Slater, Parity dimension for graphs, Discrete Math. 187 (1998) 1-17, doi: 10.1016/S0012-365X(97)00242-2.

[2] A. Amin and P. Slater, Neighborhood domination with parity restriction in graphs, Congr. Numer. 91 (1992) 19-30.

[3] A. Amin and P. Slater, All parity realizable trees, J. Combin. Math. and Combin. Comput. 20 (1996) 53-63.

[4] Y. Caro, Simple proofs to three parity theorems, Ars Combin. 42 (1996) 175-180.

[5] Y. Caro and W. Klostermeyer, The odd domination number of a graph, J. Combin. Math. Combin. Comput. 44 (2003) 65-84.

[6] Y. Caro, W. Klostermeyer and J. Goldwasser, Odd and residue domination numbers of a graph, Discuss. Math. Graph Theory 21 (2001) 119-136, doi: 10.7151/dmgt.1137.

[7] M. Conlon, M. Falidas, M. Forde, J. Kennedy, S. McIlwaine and J. Stern, Inversion numbers of graphs, Graph Theory Notes of New York XXXVII (1999) 43-49.

[8] R. Cowen, S. Hechler, J. Kennedy and A. Ryba, Inversion and neighborhood inversion in graphs, Graph Theory Notes of New York XXXVII (1999) 38-42.

[9] J. Goldwasser, W. Klostermeyer and G. Trapp, Characterizing switch-setting problems, Linear and Multilinear Algebra 43 (1997) 121-135, doi: 10.1080/03081089708818520.

[10] J. Goldwasser and W. Klostermeyer, Maximization versions of 'Lights Out' games in grids and graphs, Congr. Numer. 126 (1997) 99-111.

[11] J. Goldwasser, W. Klostermeyer and H. Ware, Fibonacci polynomials and parity domination in grid graphs, Graphs and Combinatorics 18 (2002) 271-283, doi: 10.1007/s003730200020.

[12] M. Halldorsson, J. Kratochvil and J. Telle, Mod-2 independence and domination in graphs, in: Proceedings Workshop on Graph-Theoretic Concepts in Computer Science '99, Ascona, Switzerland (Springer-Verlag, Lecture Notes in Computer Science, 1999) 101-109.

[13] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[14] K. Sutner, Linear cellular automata and the Garden-of-Eden, The Mathematical Intelligencer 11 (2) (1989) 49-53, doi: 10.1007/BF03023823.