Planar Ramsey numbers
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 45-50.

Voir la notice de l'article provenant de la source Library of Science

The planar Ramsey number PR(G,H) is defined as the smallest integer n for which any 2-colouring of edges of Kₙ with red and blue, where red edges induce a planar graph, leads to either a red copy of G, or a blue H. In this note we study the weak induced version of the planar Ramsey number in the case when the second graph is complete.
Keywords: Ramsey number, planar graph, induced subgraph
@article{DMGT_2005_25_1-2_a4,
     author = {Gorgol, Izolda},
     title = {Planar {Ramsey} numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a4/}
}
TY  - JOUR
AU  - Gorgol, Izolda
TI  - Planar Ramsey numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 45
EP  - 50
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a4/
LA  - en
ID  - DMGT_2005_25_1-2_a4
ER  - 
%0 Journal Article
%A Gorgol, Izolda
%T Planar Ramsey numbers
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 45-50
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a4/
%G en
%F DMGT_2005_25_1-2_a4
Gorgol, Izolda. Planar Ramsey numbers. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 45-50. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a4/

[1] K. Appel and W. Haken, Every planar map is four colourable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.

[2] K. Appel, W. Haken, and J. Koch, Every planar map is four colourable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567.

[3] W. Deuber, A generalization of Ramsey's theorem, in: R. Rado, A. Hajnal and V. Sós, eds., Infinite and finite sets, vol. 10 (North-Holland, 1975) 323-332.

[4] P. Erdős, A. Hajnal and L. Pósa, Strong embeddings of graphs into colored graphs, in: R. Rado, A. Hajnal and V. Sós, eds., Infinite and finite sets, vol. 10 (North-Holland, 1975) 585-595.

[5] I. Gorgol, A note on a triangle-free - complete graph induced Ramsey number, Discrete Math. 235 (2001) 159-163, doi: 10.1016/S0012-365X(00)00269-7.

[6] I. Gorgol, Planar and induced Ramsey numbers (Ph.D. thesis (in Polish), Adam Mickiewicz University Poznań, Poland, 2000) 51-57.

[7] I. Gorgol and T. Łuczak, On induced Ramsey numbers, Discrete Math. 251 (2002) 87-96, doi: 10.1016/S0012-365X(01)00328-4.

[8] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7, doi: 10.4153/CJM-1955-001-4.

[9] H. Grötzsch, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math. Natur. Reihe 8 (1958/1959) 109-120.

[10] B. Grünbaum, Grötzsch's theorem on 3-colorings, Michigan Math. J. 10 (1963) 303-310.

[11] N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory (B) 70 (1997) 145-161, doi: 10.1006/jctb.1997.1750.

[12] V. Rödl, A generalization of Ramsey theorem (Ph.D. thesis, Charles University, Prague, Czech Republic, 1973) 211-220.

[13] R. Steinberg and C.A. Tovey, Planar Ramsey number, J. Combin. Theory (B) 59 (1993) 288-296, doi: 10.1006/jctb.1993.1070.

[14] K. Walker, The analog of Ramsey numbers for planar graphs, Bull. London Math. Soc. 1 (1969) 187-190, doi: 10.1112/blms/1.2.187.