Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2005_25_1-2_a3, author = {Rall, Douglas}, title = {Total domination in categorical products of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {35--44}, publisher = {mathdoc}, volume = {25}, number = {1-2}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a3/} }
Rall, Douglas. Total domination in categorical products of graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 35-44. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a3/
[1] B.D. Acharya, Graphs whose r-neighbourhoods form conformal hypergraphs, Indian J. Pure Appl. Math. 16 (5) (1985) 461-464.
[2] B.L. Hartnell and D.F. Rall, Lower bounds for dominating Cartesian products, J. Combin. Math. Combin. Comput. 31 (1999) 219-226.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, Inc. New York, 1998).
[5] M.A. Henning, Packing in trees, Discrete Math. 186 (1998) 145-155, doi: 10.1016/S0012-365X(97)00228-8.
[6] M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs and Combinatorics, to appear.
[7] M.A. Henning and P.J. Slater, Open packing in graphs, J. Combin. Math. Combin. Comput. 29 (1999) 3-16.
[8] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley Sons, Inc. New York, 2000).
[9] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267, doi: 10.1016/0012-365X(72)90006-4.
[10] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.
[11] R.J. Nowakowski and D.F. Rall, Associative graph products and their independence, domination and coloring numbers, Discuss. Math. Graph Theory 16 (1996) 53-79, doi: 10.7151/dmgt.1023.