On double domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 29-34.

Voir la notice de l'article provenant de la source Library of Science

In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ_×2(G). A function f(p) is defined, and it is shown that γ_×2(G) = min f(p), where the minimum is taken over the n-dimensional cube Cⁿ = p = (p₁,...,pₙ) | p_i ∈ IR, 0 ≤ p_i ≤ 1,i = 1,...,n. Using this result, it is then shown that if G has order n with minimum degree δ and average degree d, then γ_×2(G) ≤ ((ln(1+d) + lnδ + 1)/δ)n.
Keywords: average degree, bounds, double domination, probabilistic method
@article{DMGT_2005_25_1-2_a2,
     author = {Harant, Jochen and Henning, Michael},
     title = {On double domination in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {29--34},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a2/}
}
TY  - JOUR
AU  - Harant, Jochen
AU  - Henning, Michael
TI  - On double domination in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 29
EP  - 34
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a2/
LA  - en
ID  - DMGT_2005_25_1-2_a2
ER  - 
%0 Journal Article
%A Harant, Jochen
%A Henning, Michael
%T On double domination in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 29-34
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a2/
%G en
%F DMGT_2005_25_1-2_a2
Harant, Jochen; Henning, Michael. On double domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 29-34. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a2/

[1] M. Blidia, M. Chellali and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, submitted for publication.

[2] M. Blidia, M. Chellali, T.W. Haynes and M.A. Henning, Independent and double domination in trees, submitted for publication.

[3] M. Chellali and T.W. Haynes, Paired and double domination in graphs, Utilitas Math., to appear.

[4] J. Harant, A. Pruchnewski and M. Voigt, On dominating sets and independent sets of graphs, Combin. Prob. and Comput. 8 (1998) 547-553, doi: 10.1017/S0963548399004034.

[5] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201-213.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[8] M.A. Henning, Graphs with large double domination numbers, submitted for publication.

[9] C.S. Liao and G.J. Chang, Algorithmic aspects of k-tuple domination in graphs, Taiwanese J. Math. 6 (2002) 415-420.

[10] C.S. Liao and G.J. Chang, k-tuple domination in graphs, Information Processing Letters 87 (2003) 45-50, doi: 10.1016/S0020-0190(03)00233-3.