Note on partitions of planar graphs
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 211-215.

Voir la notice de l'article provenant de la source Library of Science

Chartrand and Kronk in 1969 showed that there are planar graphs whose vertices cannot be partitioned into two parts inducing acyclic subgraphs. In this note we show that the same is true even in the case when one of the partition classes is required to be triangle-free only.
Keywords: planar graph, hereditary property of graphs, forest and triangle-free graph
@article{DMGT_2005_25_1-2_a19,
     author = {Broere, Izak and Wilson, Bonita and Bucko, Jozef},
     title = {Note on partitions of planar graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {211--215},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a19/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Wilson, Bonita
AU  - Bucko, Jozef
TI  - Note on partitions of planar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 211
EP  - 215
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a19/
LA  - en
ID  - DMGT_2005_25_1-2_a19
ER  - 
%0 Journal Article
%A Broere, Izak
%A Wilson, Bonita
%A Bucko, Jozef
%T Note on partitions of planar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 211-215
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a19/
%G en
%F DMGT_2005_25_1-2_a19
Broere, Izak; Wilson, Bonita; Bucko, Jozef. Note on partitions of planar graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 211-215. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a19/

[1] K. Appel and W. Haken, Every planar graph is four colourable, Illinois J. Math. 21 (1977) 429-567.

[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[3] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs, Discrete Math. 212 (2000) 19-27, doi: 10.1016/S0012-365X(99)00205-8.

[4] G. Chartrand and H. H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612.

[5] T. Kaiser and R. Skrekovski, Planar graph colorings without short monochromatic cycles, J. Graph Theory 46 (2004) 25-38, doi: 10.1002/jgt.10167.

[6] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.

[7] P. Mihók, Minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E.

[8] C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory (B) 65 (1995) 305-314, doi: 10.1006/jctb.1995.1057.