@article{DMGT_2005_25_1-2_a19,
author = {Broere, Izak and Wilson, Bonita and Bucko, Jozef},
title = {Note on partitions of planar graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {211--215},
year = {2005},
volume = {25},
number = {1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a19/}
}
Broere, Izak; Wilson, Bonita; Bucko, Jozef. Note on partitions of planar graphs. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 211-215. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a19/
[1] K. Appel and W. Haken, Every planar graph is four colourable, Illinois J. Math. 21 (1977) 429-567.
[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[3] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs, Discrete Math. 212 (2000) 19-27, doi: 10.1016/S0012-365X(99)00205-8.
[4] G. Chartrand and H. H. Kronk, The point arboricity of planar graphs, J. London Math. Soc. 44 (1969) 612-616, doi: 10.1112/jlms/s1-44.1.612.
[5] T. Kaiser and R. Skrekovski, Planar graph colorings without short monochromatic cycles, J. Graph Theory 46 (2004) 25-38, doi: 10.1002/jgt.10167.
[6] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.
[7] P. Mihók, Minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150 (1996) 431-435, doi: 10.1016/0012-365X(95)00211-E.
[8] C. Thomassen, Decomposing a planar graph into degenerate graphs, J. Combin. Theory (B) 65 (1995) 305-314, doi: 10.1006/jctb.1995.1057.