The cycle-complete graph Ramsey number r(C₅,K₇)
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 129-139

Voir la notice de l'article provenant de la source Library of Science

The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.
Keywords: Ramsey numbers, extremal graphs
@article{DMGT_2005_25_1-2_a13,
     author = {Schiermeyer, Ingo},
     title = {The cycle-complete graph {Ramsey} number {r(C₅,K₇)}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a13/}
}
TY  - JOUR
AU  - Schiermeyer, Ingo
TI  - The cycle-complete graph Ramsey number r(C₅,K₇)
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 129
EP  - 139
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a13/
LA  - en
ID  - DMGT_2005_25_1-2_a13
ER  - 
%0 Journal Article
%A Schiermeyer, Ingo
%T The cycle-complete graph Ramsey number r(C₅,K₇)
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 129-139
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a13/
%G en
%F DMGT_2005_25_1-2_a13
Schiermeyer, Ingo. The cycle-complete graph Ramsey number r(C₅,K₇). Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 129-139. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a13/