Graph domination in distance two
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 121-128.

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a graph, and k ≥ 1 an integer. A subgraph D is said to be k-dominating in G if every vertex of G-D is at distance at most k from some vertex of D. For a given class of graphs, Domₖ is the set of those graphs G in which every connected induced subgraph H has some k-dominating induced subgraph D ∈ which is also connected. In our notation, Dom coincides with Dom₁. In this paper we prove that Dom Dom _u = Dom₂ _u holds for _u = all connected graphs without induced P_u (u ≥ 2). (In particular, ₂ = K₁ and ₃ = all complete graphs.) Some negative examples are also given.
Keywords: graph, dominating set, connected domination, distance domination, forbidden induced subgraph
@article{DMGT_2005_25_1-2_a12,
     author = {Bacs\'o, G\'abor and T\'alos, Attila and Tuza, Zsolt},
     title = {Graph domination in distance two},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a12/}
}
TY  - JOUR
AU  - Bacsó, Gábor
AU  - Tálos, Attila
AU  - Tuza, Zsolt
TI  - Graph domination in distance two
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 121
EP  - 128
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a12/
LA  - en
ID  - DMGT_2005_25_1-2_a12
ER  - 
%0 Journal Article
%A Bacsó, Gábor
%A Tálos, Attila
%A Tuza, Zsolt
%T Graph domination in distance two
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 121-128
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a12/
%G en
%F DMGT_2005_25_1-2_a12
Bacsó, Gábor; Tálos, Attila; Tuza, Zsolt. Graph domination in distance two. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 121-128. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a12/

[1] G. Bacsó and Zs. Tuza, A characterization of graphs without long induced paths, J. Graph Theory 14 (1990) 455-464, doi: 10.1002/jgt.3190140409.

[2] G. Bacsó and Zs. Tuza, Dominating cliques in P₅-free graphs, Periodica Math. Hungar. 21 (1990) 303-308, doi: 10.1007/BF02352694.

[3] G. Bacsó and Zs. Tuza, Domination properties and induced subgraphs, Discrete Math. 1 (1993) 37-40.

[4] G. Bacsó and Zs. Tuza, Dominating subgraphs of small diameter, J. Combin. Inf. Syst. Sci. 22 (1997) 51-62.

[5] G. Bacsó and Zs. Tuza, Structural domination in graphs, Ars Combinatoria 63 (2002) 235-256.

[6] M.B. Cozzens and L.L. Kelleher, Dominating cliques in graphs, pp. 101-116 in [10].

[7] P. Erdős, M. Saks and V.T. Sós Maximum induced trees in graphs, J. Combin. Theory (B) 41 (1986) 61-79, doi: 10.1016/0095-8956(86)90028-6.

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, N.Y., 1998).

[9] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Nath. Soc. 3 (1962) 789-795, doi: 10.1090/S0002-9939-1962-0172273-0.

[10] - Topics on Domination (R. Laskar and S. Hedetniemi, eds.), Annals of Discrete Math. 86 (1990).