Graphs with large double domination numbers
Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 13-28

Voir la notice de l'article provenant de la source Library of Science

In a graph G, a vertex dominates itself and its neighbors. A subset S ⊆ V(G) is a double dominating set of G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set of G is the double domination number γ_×2(G). If G ≠ C₅ is a connected graph of order n with minimum degree at least 2, then we show that γ_×2(G) ≤ 3n/4 and we characterize those graphs achieving equality.
Keywords: bounds, domination, double domination, minimum degree two
@article{DMGT_2005_25_1-2_a1,
     author = {Henning, Michael},
     title = {Graphs with large double domination numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {13--28},
     publisher = {mathdoc},
     volume = {25},
     number = {1-2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a1/}
}
TY  - JOUR
AU  - Henning, Michael
TI  - Graphs with large double domination numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2005
SP  - 13
EP  - 28
VL  - 25
IS  - 1-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a1/
LA  - en
ID  - DMGT_2005_25_1-2_a1
ER  - 
%0 Journal Article
%A Henning, Michael
%T Graphs with large double domination numbers
%J Discussiones Mathematicae. Graph Theory
%D 2005
%P 13-28
%V 25
%N 1-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a1/
%G en
%F DMGT_2005_25_1-2_a1
Henning, Michael. Graphs with large double domination numbers. Discussiones Mathematicae. Graph Theory, Tome 25 (2005) no. 1-2, pp. 13-28. http://geodesic.mathdoc.fr/item/DMGT_2005_25_1-2_a1/