Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_3_a9, author = {Polcyn, Joanna}, title = {Short paths in 3-uniform quasi-random hypergraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {469--484}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/} }
Polcyn, Joanna. Short paths in 3-uniform quasi-random hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 469-484. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/
[1] B. Bollobás, Random Graphs (Academic Press, London, 1985).
[2] Y. Dementieva, Equivalent Conditions for Hypergraph Regularity (Ph.D. Thesis, Emory University, 2001).
[3] P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures and Algorithms 20 (2002) 131-164, doi: 10.1002/rsa.10017.
[4] S. Janson, T. Łuczak and A. Ruciński, Random Graphs (Wiley, New York, 2000), doi: 10.1002/9781118032718.
[5] J. Komlós, G.N. Sárközy and E. Szemerédi, On the square of a Hamiltonian cycle in dense graphs, Random Structures and Algorithms 9 (1996) 193-211, doi: 10.1002/(SICI)1098-2418(199608/09)9:1/2193::AID-RSA12>3.0.CO;2-P
[6] J. Komlós, G.N. Sárközy and E. Szemerédi, On the Pósa-Seymour conjecture, J. Graph Theory 29 (1998) 167-176.
[7] J. Polcyn, V. Rödl, A. Ruciński and E. Szemerédi, Short paths in quasi-random triple systems with sparse underlying graphs, in preparation.
[8] B. Nagle and V. Rödl, Regularity properties for triple systems, Random Structures and Algorithms 23 (2003) 264-332, doi: 10.1002/rsa.10094.
[9] V. Rödl, A. Ruciński and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, submitted.
[10] E. Szemerédi, Regular partitions of graphs, in: Problèmes en Combinatoire et Théorie des Graphes, Proc. Colloque Inter. CNRS, (J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau, eds), (1978) 399-401.