Short paths in 3-uniform quasi-random hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 469-484.

Voir la notice de l'article provenant de la source Library of Science

Frankl and Rödl [3] proved a strong regularity lemma for 3-uniform hypergraphs, based on the concept of δ-regularity with respect to an underlying 3-partite graph. In applications of that lemma it is often important to be able to "glue" together separate pieces of the desired subhypergraph. With this goal in mind, in this paper it is proved that every pair of typical edges of the underlying graph can be connected by a hyperpath of length at most seven. The typicality of edges is defined in terms of graph and hypergraph neighborhoods, and it is shown that all but a small fraction of edges are indeed typical.
Keywords: hypergraph, path, quasi-randomness
@article{DMGT_2004_24_3_a9,
     author = {Polcyn, Joanna},
     title = {Short paths in 3-uniform quasi-random hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {469--484},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/}
}
TY  - JOUR
AU  - Polcyn, Joanna
TI  - Short paths in 3-uniform quasi-random hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 469
EP  - 484
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/
LA  - en
ID  - DMGT_2004_24_3_a9
ER  - 
%0 Journal Article
%A Polcyn, Joanna
%T Short paths in 3-uniform quasi-random hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 469-484
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/
%G en
%F DMGT_2004_24_3_a9
Polcyn, Joanna. Short paths in 3-uniform quasi-random hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 469-484. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/

[1] B. Bollobás, Random Graphs (Academic Press, London, 1985).

[2] Y. Dementieva, Equivalent Conditions for Hypergraph Regularity (Ph.D. Thesis, Emory University, 2001).

[3] P. Frankl and V. Rödl, Extremal problems on set systems, Random Structures and Algorithms 20 (2002) 131-164, doi: 10.1002/rsa.10017.

[4] S. Janson, T. Łuczak and A. Ruciński, Random Graphs (Wiley, New York, 2000), doi: 10.1002/9781118032718.

[5] J. Komlós, G.N. Sárközy and E. Szemerédi, On the square of a Hamiltonian cycle in dense graphs, Random Structures and Algorithms 9 (1996) 193-211, doi: 10.1002/(SICI)1098-2418(199608/09)9:1/2193::AID-RSA12>3.0.CO;2-P

[6] J. Komlós, G.N. Sárközy and E. Szemerédi, On the Pósa-Seymour conjecture, J. Graph Theory 29 (1998) 167-176.

[7] J. Polcyn, V. Rödl, A. Ruciński and E. Szemerédi, Short paths in quasi-random triple systems with sparse underlying graphs, in preparation.

[8] B. Nagle and V. Rödl, Regularity properties for triple systems, Random Structures and Algorithms 23 (2003) 264-332, doi: 10.1002/rsa.10094.

[9] V. Rödl, A. Ruciński and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, submitted.

[10] E. Szemerédi, Regular partitions of graphs, in: Problèmes en Combinatoire et Théorie des Graphes, Proc. Colloque Inter. CNRS, (J.-C. Bermond, J.-C. Fournier, M. Las Vergnas, D. Sotteau, eds), (1978) 399-401.