Short paths in 3-uniform quasi-random hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 469-484

Voir la notice de l'article provenant de la source Library of Science

Frankl and Rödl [3] proved a strong regularity lemma for 3-uniform hypergraphs, based on the concept of δ-regularity with respect to an underlying 3-partite graph. In applications of that lemma it is often important to be able to "glue" together separate pieces of the desired subhypergraph. With this goal in mind, in this paper it is proved that every pair of typical edges of the underlying graph can be connected by a hyperpath of length at most seven. The typicality of edges is defined in terms of graph and hypergraph neighborhoods, and it is shown that all but a small fraction of edges are indeed typical.
Keywords: hypergraph, path, quasi-randomness
@article{DMGT_2004_24_3_a9,
     author = {Polcyn, Joanna},
     title = {Short paths in 3-uniform quasi-random hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {469--484},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/}
}
TY  - JOUR
AU  - Polcyn, Joanna
TI  - Short paths in 3-uniform quasi-random hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 469
EP  - 484
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/
LA  - en
ID  - DMGT_2004_24_3_a9
ER  - 
%0 Journal Article
%A Polcyn, Joanna
%T Short paths in 3-uniform quasi-random hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 469-484
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/
%G en
%F DMGT_2004_24_3_a9
Polcyn, Joanna. Short paths in 3-uniform quasi-random hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 469-484. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a9/