Packing of three copies of a digraph into the transitive tournament
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 443-456.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we show that if the number of arcs in an oriented graph G (of order n) without directed cycles is sufficiently small (not greater than [2/3] n-1), then there exist arc disjoint embeddings of three copies of G into the transitive tournament TTₙ. It is the best possible bound.
Keywords: packing of digraphs, transitive tournament
@article{DMGT_2004_24_3_a7,
     author = {Pil\'sniak, Monika},
     title = {Packing of three copies of a digraph into the transitive tournament},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {443--456},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a7/}
}
TY  - JOUR
AU  - Pilśniak, Monika
TI  - Packing of three copies of a digraph into the transitive tournament
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 443
EP  - 456
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a7/
LA  - en
ID  - DMGT_2004_24_3_a7
ER  - 
%0 Journal Article
%A Pilśniak, Monika
%T Packing of three copies of a digraph into the transitive tournament
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 443-456
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a7/
%G en
%F DMGT_2004_24_3_a7
Pilśniak, Monika. Packing of three copies of a digraph into the transitive tournament. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 443-456. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a7/

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).

[2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory 25 (B) (1978) 105-124.

[3] D. Burns and S. Schuster, Every (n,n-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[4] A. Görlich, M. Pilśniak and M. Woźniak, A note on a packing problem in transitive tournaments, preprint Faculty of Applied Mathematics, University of Mining and Metallurgy, No.37/2002.

[5] H. Kheddouci, S. Marshall, J.F. Saclé and M. Woźniak, On the packing of three graphs, Discrete Math. 236 (2001) 197-225, doi: 10.1016/S0012-365X(00)00443-X.

[6] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory 25 (B) (1978) 295-302.

[7] M. Woźniak and A.P. Wojda, Triple placement of graphs, Graphs and Combin. 9 (1993) 85-91, doi: 10.1007/BF01195330.

[8] M. Woźniak, Packing of graphs, Dissertationes Math. 362 (1997).

[9] H.P. Yap, Some Topics in Graph Theory, London Math. Society, Lectures Notes Series, Vol. 108 (Cambridge University Press, Cambridge, 1986).

[10] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.