Even [a,b]-factors in graphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 431-441.

Voir la notice de l'article provenant de la source Library of Science

Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.
Keywords: even factor, eulerian, spanning subgraph
@article{DMGT_2004_24_3_a6,
     author = {Kouider, Mekkia and Vestergaard, Preben},
     title = {Even [a,b]-factors in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {431--441},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a6/}
}
TY  - JOUR
AU  - Kouider, Mekkia
AU  - Vestergaard, Preben
TI  - Even [a,b]-factors in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 431
EP  - 441
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a6/
LA  - en
ID  - DMGT_2004_24_3_a6
ER  - 
%0 Journal Article
%A Kouider, Mekkia
%A Vestergaard, Preben
%T Even [a,b]-factors in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 431-441
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a6/
%G en
%F DMGT_2004_24_3_a6
Kouider, Mekkia; Vestergaard, Preben. Even [a,b]-factors in graphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 431-441. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a6/

[1] J. Akiyama and M. Kano, Factors and factorizations of graphs - a survey, J. Graph Theory 9 (1985) 1-42, doi: 10.1002/jgt.3190090103.

[2] A. Amahashi, On factors with all degrees odd, Graphs and Combin. 1 (1985) 111-114, doi: 10.1007/BF02582935.

[3] Mao-Cheng Cai, On some factor theorems of graphs, Discrete Math. 98 (1991) 223-229, doi: 10.1016/0012-365X(91)90378-F.

[4] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (McGraw-Hill, Inc., 1993).

[5] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory 12 (1988) 327-333, doi: 10.1002/jgt.3190120305.

[6] M. Kano, [a,b] -factorization of a graph, J. Graph Theory 9 (1985) 129-146, doi: 10.1002/jgt.3190090111.

[7] M. Kano and A. Saito, [a,b] -factors of a graph, Discrete Math. 47 (1983) 113-116, doi: 10.1016/0012-365X(83)90077-8.

[8] M. Kano, A sufficient condition for a graph to have [a,b] -factors, Graphs Combin. 6 (1990) 245-251, doi: 10.1007/BF01787576.

[9] M. Kouider and M. Maheo, Connected (a,b)-factors in graphs, 1998. Research report no. 1151, LRI, (Paris Sud, Centre d'Orsay). Accepted for publication in Combinatorica.

[10] M. Kouider and M. Maheo, 2 edge-connected [2,k] -factors in graphs, JCMCC 35 (2000) 75-89.

[11] M. Kouider and P.D. Vestergaard, On even [2,b] -factors in graphs, Australasian J. Combin. 27 (2003) 139-147.

[12] Y. Li and M. Cai, A degree condition for a graph to have [a,b] -factors, J. Graph Theory 27 (1998) 1-6, doi: 10.1002/(SICI)1097-0118(199801)27:11::AID-JGT1>3.0.CO;2-U

[13] L. Lovász, Subgraphs with prescribed valencies, J. Comb. Theory 8 (1970) 391-416, doi: 10.1016/S0021-9800(70)80033-3.

[14] L. Lovász, The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972) 223-246, doi: 10.1007/BF01889919.

[15] J. Topp and P.D. Vestergaard, Odd factors of a graph, Graphs and Combin. 9 (1993) 371-381, doi: 10.1007/BF02988324.