A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 545-549.

Voir la notice de l'article provenant de la source Library of Science

The Erdős-Faber-Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.
Keywords: chromatic number, Erdős-Faber-Lovász conjecture, maximal partial clones
@article{DMGT_2004_24_3_a16,
     author = {Haddad, Lucien and Tardif, Claude},
     title = {A clone-theoretic formulation of the {Erdos-Faber-Lov\'asz} conjecture},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {545--549},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a16/}
}
TY  - JOUR
AU  - Haddad, Lucien
AU  - Tardif, Claude
TI  - A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 545
EP  - 549
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a16/
LA  - en
ID  - DMGT_2004_24_3_a16
ER  - 
%0 Journal Article
%A Haddad, Lucien
%A Tardif, Claude
%T A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 545-549
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a16/
%G en
%F DMGT_2004_24_3_a16
Haddad, Lucien; Tardif, Claude. A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 545-549. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a16/

[1] P. Erdős, On the Combinatorial problems which I would most like to see solved, Combinatorica 1 (1981) 25-42, doi: 10.1007/BF02579174.

[2] L. Haddad, Le treillis des clones partiels sur un univers fini et ses coatomes (Ph, D. thesis, Université de Montréal, 1986).

[3] L. Haddad and I.G. Rosenberg, Critère général de complétude pour les algèbres partielles finies, C.R. Acad. Sci. Paris, tome 304, Série I, 17 (1987) 507-509.

[4] L. Haddad, Maximal partial clones determined by quasi-diagonal relations, J. Inf. Process. Cybern. EIK 24 (1988) 7/8 355-366.

[5] L. Haddad and I.G. Rosenberg, Maximal partial clones determined by areflexive relations, Discrete Appl. Math. 24 (1989) 133-143, doi: 10.1016/0166-218X(92)90279-J.

[6] L. Haddad, I.G. Rosenberg and D. Schweigert, A maximal partial clone and a S upecki-type criterion, Acta Sci. Math. 54 (1990) 89-98.

[7] L. Haddad and I.G. Rosenberg, Completeness theory for finite partial algebras, Algebra Universalis 29 (1992) 378-401, doi: 10.1007/BF01212439.

[8] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience series in discrete mathematics and optimization, John Wiley Sons Inc., 1995).

[9] J. Kahn, Coloring nearly-disjoint hypergraphs with n+o(n) colors, J. Combin. Theory (A) 59 (1992) 31-39, doi: 10.1016/0097-3165(92)90096-D.