Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_3_a16, author = {Haddad, Lucien and Tardif, Claude}, title = {A clone-theoretic formulation of the {Erdos-Faber-Lov\'asz} conjecture}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {545--549}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a16/} }
TY - JOUR AU - Haddad, Lucien AU - Tardif, Claude TI - A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 545 EP - 549 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a16/ LA - en ID - DMGT_2004_24_3_a16 ER -
Haddad, Lucien; Tardif, Claude. A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 545-549. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a16/
[1] P. Erdős, On the Combinatorial problems which I would most like to see solved, Combinatorica 1 (1981) 25-42, doi: 10.1007/BF02579174.
[2] L. Haddad, Le treillis des clones partiels sur un univers fini et ses coatomes (Ph, D. thesis, Université de Montréal, 1986).
[3] L. Haddad and I.G. Rosenberg, Critère général de complétude pour les algèbres partielles finies, C.R. Acad. Sci. Paris, tome 304, Série I, 17 (1987) 507-509.
[4] L. Haddad, Maximal partial clones determined by quasi-diagonal relations, J. Inf. Process. Cybern. EIK 24 (1988) 7/8 355-366.
[5] L. Haddad and I.G. Rosenberg, Maximal partial clones determined by areflexive relations, Discrete Appl. Math. 24 (1989) 133-143, doi: 10.1016/0166-218X(92)90279-J.
[6] L. Haddad, I.G. Rosenberg and D. Schweigert, A maximal partial clone and a S upecki-type criterion, Acta Sci. Math. 54 (1990) 89-98.
[7] L. Haddad and I.G. Rosenberg, Completeness theory for finite partial algebras, Algebra Universalis 29 (1992) 378-401, doi: 10.1007/BF01212439.
[8] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience series in discrete mathematics and optimization, John Wiley Sons Inc., 1995).
[9] J. Kahn, Coloring nearly-disjoint hypergraphs with n+o(n) colors, J. Combin. Theory (A) 59 (1992) 31-39, doi: 10.1016/0097-3165(92)90096-D.