Cycle-pancyclism in bipartite tournaments II
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 529-538.

Voir la notice de l'article provenant de la source Library of Science

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in T[V(γ)]? It is proved that for an even k in the range (n+6)/2 ≤ k ≤ n-2, there exists a directed cycle C_h(k) of length h(k), h(k) ∈ k,k-2 with |A(C_h(k)) ∩ A(γ)| ≥ h(k)-4 and the result is best possible. In a previous paper a similar result for 4 ≤ k ≤ (n+4)/2 was proved.
Keywords: bipartite tournament, pancyclism
@article{DMGT_2004_24_3_a14,
     author = {Galeana-S\'anchez, Hortensia},
     title = {Cycle-pancyclism in bipartite tournaments {II}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {529--538},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
TI  - Cycle-pancyclism in bipartite tournaments II
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 529
EP  - 538
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/
LA  - en
ID  - DMGT_2004_24_3_a14
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%T Cycle-pancyclism in bipartite tournaments II
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 529-538
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/
%G en
%F DMGT_2004_24_3_a14
Galeana-Sánchez, Hortensia. Cycle-pancyclism in bipartite tournaments II. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 529-538. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/

[1] B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967) 283-286, doi: 10.4153/CMB-1967-028-6.

[2] L.W. Beineke, A tour through tournaments or bipartite and ordinary tournaments: A comparative survey. J. London Math. Soc. Lect. Notes Ser. 52 (1981) 41-55.

[3] L.W. Beineke and V. Little, Cycles in bipartite tournaments, J. Combin. Theory (B) 32 (1982) 140-145, doi: 10.1016/0095-8956(82)90029-6.

[4] C. Berge, Graphs and hypergraphs (North-Holland, Amsterdam, 1976).

[5] J.C. Bermond and C. Thomasen, Cycles in digraphs, A survey, J. Graph Theory 5 (1981) 145-147, doi: 10.1002/jgt.3190050102.

[6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combinatorics 11 (1995) 233-243, doi: 10.1007/BF01793009.

[7] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combinatorics 12 (1996) 9-16, doi: 10.1007/BF01858440.

[8] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combinatorics 13 (1997) 57-63, doi: 10.1007/BF01202236.

[9] H. Galeana-Sánchez and S. Rajsbaum, A Conjecture on Cycle-Pancyclism in Tournaments, Discuss. Math. Graph Theory 18 (1998) 243-251, doi: 10.7151/dmgt.1080.

[10] H. Galeana-Sanchez, Cycle-Pancyclism in Bipartite Tournaments I, Discuss. Math. Graph Theory 24 (2004) 277-290, doi: 10.7151/dmgt.1231.

[11] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: A survey, J. Graph Theory 19 (1995) 481-505, doi: 10.1002/jgt.3190190405.

[12] R. Häggkvist and Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38, doi: 10.1007/BF02122681.

[13] L. Volkmann, Cycles in multipartite tournaments, results and problems, Discrete Math. 245 (2002) 19-53, doi: 10.1016/S0012-365X(01)00419-8.

[14] C.Q. Zhang, Vertex even-pancyclicity in bipartite tournaments, J. Nanjing Univ. Math. Biquart 1 (1981) 85-88.

[15] K.M. Zhang and Z.M. Song, Cycles in digraphs, a survey, J. Nanjing Univ., Nat. Sci. Ed. 27 (1991) 188-215.