Cycle-pancyclism in bipartite tournaments II
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 529-538

Voir la notice de l'article provenant de la source Library of Science

Let T be a hamiltonian bipartite tournament with n vertices, γ a hamiltonian directed cycle of T, and k an even number. In this paper the following question is studied: What is the maximum intersection with γ of a directed cycle of length k contained in T[V(γ)]? It is proved that for an even k in the range (n+6)/2 ≤ k ≤ n-2, there exists a directed cycle C_h(k) of length h(k), h(k) ∈ k,k-2 with |A(C_h(k)) ∩ A(γ)| ≥ h(k)-4 and the result is best possible. In a previous paper a similar result for 4 ≤ k ≤ (n+4)/2 was proved.
Keywords: bipartite tournament, pancyclism
@article{DMGT_2004_24_3_a14,
     author = {Galeana-S\'anchez, Hortensia},
     title = {Cycle-pancyclism in bipartite tournaments {II}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {529--538},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
TI  - Cycle-pancyclism in bipartite tournaments II
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 529
EP  - 538
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/
LA  - en
ID  - DMGT_2004_24_3_a14
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%T Cycle-pancyclism in bipartite tournaments II
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 529-538
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/
%G en
%F DMGT_2004_24_3_a14
Galeana-Sánchez, Hortensia. Cycle-pancyclism in bipartite tournaments II. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 529-538. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a14/