Linear forests and ordered cycles
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 359-372
Voir la notice de l'article provenant de la source Library of Science
A collection L = P¹ ∪ P² ∪ ... ∪ P^t (1 ≤ t ≤ k) of t disjoint paths, s of them being singletons with |V(L)| = k is called a (k,t,s)-linear forest. A graph G is (k,t,s)-ordered if for every (k,t,s)-linear forest L in G there exists a cycle C in G that contains the paths of L in the designated order as subpaths. If the cycle is also a hamiltonian cycle, then G is said to be (k,t,s)-ordered hamiltonian. We give sharp sum of degree conditions for nonadjacent vertices that imply a graph is (k,t,s)-ordered hamiltonian.
Keywords:
hamilton cycles, graph linkages
@article{DMGT_2004_24_3_a0,
author = {Chen, Guantao and Faudree, Ralph and Gould, Ronald and Jacobson, Michael and Lesniak, Linda and Pfender, Florian},
title = {Linear forests and ordered cycles},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {359--372},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a0/}
}
TY - JOUR AU - Chen, Guantao AU - Faudree, Ralph AU - Gould, Ronald AU - Jacobson, Michael AU - Lesniak, Linda AU - Pfender, Florian TI - Linear forests and ordered cycles JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 359 EP - 372 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a0/ LA - en ID - DMGT_2004_24_3_a0 ER -
%0 Journal Article %A Chen, Guantao %A Faudree, Ralph %A Gould, Ronald %A Jacobson, Michael %A Lesniak, Linda %A Pfender, Florian %T Linear forests and ordered cycles %J Discussiones Mathematicae. Graph Theory %D 2004 %P 359-372 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a0/ %G en %F DMGT_2004_24_3_a0
Chen, Guantao; Faudree, Ralph; Gould, Ronald; Jacobson, Michael; Lesniak, Linda; Pfender, Florian. Linear forests and ordered cycles. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 3, pp. 359-372. http://geodesic.mathdoc.fr/item/DMGT_2004_24_3_a0/