Hereditary domination and independence parameters
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 239-248.

Voir la notice de l'article provenant de la source Library of Science

For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for arbitrary properties P that are closed under disjoint unions and subgraphs.
Keywords: domination, hereditary property, independence
@article{DMGT_2004_24_2_a6,
     author = {Goddard, Wayne and Haynes, Teresa and Knisley, Debra},
     title = {Hereditary domination and independence parameters},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {239--248},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/}
}
TY  - JOUR
AU  - Goddard, Wayne
AU  - Haynes, Teresa
AU  - Knisley, Debra
TI  - Hereditary domination and independence parameters
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 239
EP  - 248
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/
LA  - en
ID  - DMGT_2004_24_2_a6
ER  - 
%0 Journal Article
%A Goddard, Wayne
%A Haynes, Teresa
%A Knisley, Debra
%T Hereditary domination and independence parameters
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 239-248
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/
%G en
%F DMGT_2004_24_2_a6
Goddard, Wayne; Haynes, Teresa; Knisley, Debra. Hereditary domination and independence parameters. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 239-248. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[2] M. Borowiecki, D. Michalak and E. Sidorowicz, Generalized domination, independence and irredundance, Discuss. Math. Graph Theory 17 (1997) 143-153, doi: 10.7151/dmgt.1048.

[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa, 1991) 41-68.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability (W H Freeman, 1979).

[5] J. Gimbel and P.D. Vestergaard, Inequalities for total matchings of graphs, Ars Combin. 39 (1995) 109-119.

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1997).

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds.) Domination in Graphs: Advanced topics (Marcel Dekker, 1997).

[8] T.W. Haynes and M.A. Henning, Path-free domination, J. Combin. Math. Combin. Comput. 33 (2000) 9-21.

[9] S.M. Hedetniemi, S.T. Hedetniemi and D.F. Rall, Acyclic domination, Discrete Math. 222 (2000) 151-165, doi: 10.1016/S0012-365X(00)00012-1.

[10] D. Michalak, Domination, independence and irredundance with respect to additive induced-hereditary properties, Discrete Math., to appear.

[11] C.M. Mynhardt, On the difference between the domination and independent domination number of cubic graphs, in: Graph Theory, Combinatorics, and Applications, Y. Alavi et al. eds, Wiley, 2 (1991) 939-947.