Hereditary domination and independence parameters
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 239-248

Voir la notice de l'article provenant de la source Library of Science

For a graphical property P and a graph G, we say that a subset S of the vertices of G is a P-set if the subgraph induced by S has the property P. Then the P-domination number of G is the minimum cardinality of a dominating P-set and the P-independence number the maximum cardinality of a P-set. We show that several properties of domination, independent domination and acyclic domination hold for arbitrary properties P that are closed under disjoint unions and subgraphs.
Keywords: domination, hereditary property, independence
@article{DMGT_2004_24_2_a6,
     author = {Goddard, Wayne and Haynes, Teresa and Knisley, Debra},
     title = {Hereditary domination and independence parameters},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {239--248},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/}
}
TY  - JOUR
AU  - Goddard, Wayne
AU  - Haynes, Teresa
AU  - Knisley, Debra
TI  - Hereditary domination and independence parameters
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 239
EP  - 248
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/
LA  - en
ID  - DMGT_2004_24_2_a6
ER  - 
%0 Journal Article
%A Goddard, Wayne
%A Haynes, Teresa
%A Knisley, Debra
%T Hereditary domination and independence parameters
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 239-248
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/
%G en
%F DMGT_2004_24_2_a6
Goddard, Wayne; Haynes, Teresa; Knisley, Debra. Hereditary domination and independence parameters. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 239-248. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a6/