Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_2_a5, author = {Chia, G. and Gan, C.}, title = {Minimal regular graphs with given girths and crossing numbers}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {223--237}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a5/} }
Chia, G.; Gan, C. Minimal regular graphs with given girths and crossing numbers. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 223-237. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a5/
[1] G. Chartrand and L. Lesniak, Graphs Digraphs (Third edition), (Chapman Hall, New York 1996).
[2] R.K. Guy and A. Hill, The crossing number of the complement of a circuit, Discrete Math. 5 (1973) 335-344, doi: 10.1016/0012-365X(73)90127-1.
[3] D.J. Kleitman, The crossing number of $K_{5,n}$, J. Combin. Theory B 9 (1970) 315-323, doi: 10.1016/S0021-9800(70)80087-4.
[4] M. Koman, On nonplanar graphs with minimum number of vertices and a given girth, Commentationes Math. Univ. Carolinae (Prague) 11 (1970) 9-17.
[5] D. McQuillan and R.B. Richter, On 3-regular graphs having crossing number at least 2, J. Graph Theory, 18 (1994) 831-839, doi: 10.1002/jgt.3190180807.
[6] M. Nihei, On the girths of regular planar graphs, Pi Mu Epsilon J. 10 (1995) 186-190.
[7] B. Richter, Cubic graphs with crossing number two, J. Graph Theory 12 (1988) 363-374, doi: 10.1002/jgt.3190120308.
[8] R.D. Ringeisen and L.W. Beineke, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155, doi: 10.1002/jgt.3190040203.
[9] G.F. Royle, Graphs and multigraphs, in: C.J. Colbourn and J.H. Dinitz ed., The CRC Handbook of Combinatorial Designs, (CRC Press, New York, 1995) 644-653.
[10] G.F. Royle, Cubic cages, http://www.cs.uwa.edu.au/~gordon/cages/index.html.
[11] P.K. Wong, Cages - a survey, J. Graph Theory 6 (1982) 1-22, doi: 10.1002/jgt.3190060103.