Graphs with small additive stretch number
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 291-301

Voir la notice de l'article provenant de la source Library of Science

The additive stretch number s_add(G) of a graph G is the maximum difference of the lengths of a longest induced path and a shortest induced path between two vertices of G that lie in the same component of G.We prove some properties of minimal forbidden configurations for the induced-hereditary classes of graphs G with s_add(G) ≤ k for some k ∈ N₀ = 0,1,2,.... Furthermore, we derive characterizations of these classes for k = 1 and k = 2.
Keywords: stretch number, distance hereditary graph, forbidden induced subgraph
@article{DMGT_2004_24_2_a10,
     author = {Rautenbach, Dieter},
     title = {Graphs with small additive stretch number},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {291--301},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a10/}
}
TY  - JOUR
AU  - Rautenbach, Dieter
TI  - Graphs with small additive stretch number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 291
EP  - 301
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a10/
LA  - en
ID  - DMGT_2004_24_2_a10
ER  - 
%0 Journal Article
%A Rautenbach, Dieter
%T Graphs with small additive stretch number
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 291-301
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a10/
%G en
%F DMGT_2004_24_2_a10
Rautenbach, Dieter. Graphs with small additive stretch number. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 291-301. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a10/