Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 171-182

Voir la notice de l'article provenant de la source Library of Science

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V(D)-N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel-perfect digraph. In this paper I investigate some sufficient conditions for a digraph to have a kernel by asking for the existence of certain diagonals or symmetrical arcs in each odd directed cycle whose length is at most 2α(D)+1, where α(D) is the maximum cardinality of an independent vertex set of D. Previous results are generalized.
Keywords: kernel, kernel-perfect, critical kernel-imperfect
@article{DMGT_2004_24_2_a1,
     author = {Galeana-S\'anchez, Hortensia},
     title = {Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {171--182},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
TI  - Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 171
EP  - 182
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/
LA  - en
ID  - DMGT_2004_24_2_a1
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%T Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 171-182
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/
%G en
%F DMGT_2004_24_2_a1
Galeana-Sánchez, Hortensia. Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 171-182. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/