Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_2_a1, author = {Galeana-S\'anchez, Hortensia}, title = {Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {171--182}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/} }
TY - JOUR AU - Galeana-Sánchez, Hortensia TI - Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 171 EP - 182 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/ LA - en ID - DMGT_2004_24_2_a1 ER -
%0 Journal Article %A Galeana-Sánchez, Hortensia %T Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel %J Discussiones Mathematicae. Graph Theory %D 2004 %P 171-182 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/ %G en %F DMGT_2004_24_2_a1
Galeana-Sánchez, Hortensia. Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 171-182. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/
[1] J. Bang-Jensen, J. Huang and E. Prisner, In-Tournament Digraphs, J. Combin. Theory (B) 59 (1993) 267-287, doi: 10.1006/jctb.1993.1069.
[2] C. Berge, Graphs, North-Holland Mathematical Library, Vol. 6 (North-Holland, Amsterdam, 1985).
[3] C. Berge, Nouvelles extensions du noyau d'un graphe et ses applications en théorie des jeux, Publ. Econométriques 6 (1977).
[4] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.
[5] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112.
[6] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.
[7] H. Galeana-Sánchez, Normal fraternally orientable graphs satisfy the strong perfect graph conjecture, Discrete Math. 122 (1993) 167-177, doi: 10.1016/0012-365X(93)90293-3.
[8] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.
[9] H. Galeana-Sánchez, B₁ and B₂-orientable graphs in kernel theory, Discrete Math. 143 (1995) 269-274, doi: 10.1016/0012-365X(94)00021-A.
[10] F. Gavril, V. Toledano and D. de Werra, Chordless paths, odd holes and kernels in graphs without M-obstructions, preprint.
[11] F. Gavril and J. Urrutia, An Algorithm for fraternal orientation of graphs, Information Processing Letters 41 (1993) 271-279.
[12] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
[13] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755.
[14] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA. 39 (1953) 649, doi: 10.1073/pnas.39.7.649.
[15] D.J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1970) 597-609, doi: 10.1016/0022-247X(70)90282-9.
[16] D.J. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular arc graphs, and nested interval graphs, J. Graph Theory 6 (1982) 309-316, doi: 10.1002/jgt.3190060307.