Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 171-182.

Voir la notice de l'article provenant de la source Library of Science

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V(D)-N there exists an arc from w to N. If every induced subdigraph of D has a kernel, D is said to be a kernel-perfect digraph. In this paper I investigate some sufficient conditions for a digraph to have a kernel by asking for the existence of certain diagonals or symmetrical arcs in each odd directed cycle whose length is at most 2α(D)+1, where α(D) is the maximum cardinality of an independent vertex set of D. Previous results are generalized.
Keywords: kernel, kernel-perfect, critical kernel-imperfect
@article{DMGT_2004_24_2_a1,
     author = {Galeana-S\'anchez, Hortensia},
     title = {Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {171--182},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
TI  - Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 171
EP  - 182
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/
LA  - en
ID  - DMGT_2004_24_2_a1
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%T Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 171-182
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/
%G en
%F DMGT_2004_24_2_a1
Galeana-Sánchez, Hortensia. Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 2, pp. 171-182. http://geodesic.mathdoc.fr/item/DMGT_2004_24_2_a1/

[1] J. Bang-Jensen, J. Huang and E. Prisner, In-Tournament Digraphs, J. Combin. Theory (B) 59 (1993) 267-287, doi: 10.1006/jctb.1993.1069.

[2] C. Berge, Graphs, North-Holland Mathematical Library, Vol. 6 (North-Holland, Amsterdam, 1985).

[3] C. Berge, Nouvelles extensions du noyau d'un graphe et ses applications en théorie des jeux, Publ. Econométriques 6 (1977).

[4] P. Duchet, Graphes Noyau-Parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.

[5] P. Duchet, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory 11 (1987) 81-85, doi: 10.1002/jgt.3190110112.

[6] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.

[7] H. Galeana-Sánchez, Normal fraternally orientable graphs satisfy the strong perfect graph conjecture, Discrete Math. 122 (1993) 167-177, doi: 10.1016/0012-365X(93)90293-3.

[8] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.

[9] H. Galeana-Sánchez, B₁ and B₂-orientable graphs in kernel theory, Discrete Math. 143 (1995) 269-274, doi: 10.1016/0012-365X(94)00021-A.

[10] F. Gavril, V. Toledano and D. de Werra, Chordless paths, odd holes and kernels in graphs without M-obstructions, preprint.

[11] F. Gavril and J. Urrutia, An Algorithm for fraternal orientation of graphs, Information Processing Letters 41 (1993) 271-279.

[12] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).

[13] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755.

[14] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA. 39 (1953) 649, doi: 10.1073/pnas.39.7.649.

[15] D.J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1970) 597-609, doi: 10.1016/0022-247X(70)90282-9.

[16] D.J. Skrien, A relationship between triangulated graphs, comparability graphs, proper interval graphs, proper circular arc graphs, and nested interval graphs, J. Graph Theory 6 (1982) 309-316, doi: 10.1002/jgt.3190060307.