Light classes of generalized stars in polyhedral maps on surfaces
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 85-107
Voir la notice de l'article provenant de la source Library of Science
A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. S_i denotes a generalized 3-star, all three maximal paths starting in Z have exactly i+1 vertices (including Z). Let be a surface of Euler characteristic χ() ≤ 0, and m():= ⎣(5 + √49-24χ( ))/2⎦. We prove:
Keywords:
polyhedral maps, embeddings, light subgraphs, path, star, 2-dimensional manifolds, surface
@article{DMGT_2004_24_1_a7,
author = {Jendrol', Stanislav and Voss, Heinz-J\"urgen},
title = {Light classes of generalized stars in polyhedral maps on surfaces},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {85--107},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a7/}
}
TY - JOUR AU - Jendrol', Stanislav AU - Voss, Heinz-Jürgen TI - Light classes of generalized stars in polyhedral maps on surfaces JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 85 EP - 107 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a7/ LA - en ID - DMGT_2004_24_1_a7 ER -
Jendrol', Stanislav; Voss, Heinz-Jürgen. Light classes of generalized stars in polyhedral maps on surfaces. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 85-107. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a7/