Light classes of generalized stars in polyhedral maps on surfaces
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 85-107

Voir la notice de l'article provenant de la source Library of Science

A generalized s-star, s ≥ 1, is a tree with a root Z of degree s; all other vertices have degree ≤ 2. S_i denotes a generalized 3-star, all three maximal paths starting in Z have exactly i+1 vertices (including Z). Let be a surface of Euler characteristic χ() ≤ 0, and m():= ⎣(5 + √49-24χ( ))/2⎦. We prove:
Keywords: polyhedral maps, embeddings, light subgraphs, path, star, 2-dimensional manifolds, surface
@article{DMGT_2004_24_1_a7,
     author = {Jendrol', Stanislav and Voss, Heinz-J\"urgen},
     title = {Light classes of generalized stars in polyhedral maps on surfaces},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {85--107},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a7/}
}
TY  - JOUR
AU  - Jendrol', Stanislav
AU  - Voss, Heinz-Jürgen
TI  - Light classes of generalized stars in polyhedral maps on surfaces
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 85
EP  - 107
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a7/
LA  - en
ID  - DMGT_2004_24_1_a7
ER  - 
%0 Journal Article
%A Jendrol', Stanislav
%A Voss, Heinz-Jürgen
%T Light classes of generalized stars in polyhedral maps on surfaces
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 85-107
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a7/
%G en
%F DMGT_2004_24_1_a7
Jendrol', Stanislav; Voss, Heinz-Jürgen. Light classes of generalized stars in polyhedral maps on surfaces. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 85-107. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a7/