Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2004_24_1_a5, author = {Galeana-S\'anchez, Hortensia and Neumann-Lara, V{\'\i}ctor}, title = {On the heterochromatic number of circulant digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {73--79}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a5/} }
TY - JOUR AU - Galeana-Sánchez, Hortensia AU - Neumann-Lara, Víctor TI - On the heterochromatic number of circulant digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2004 SP - 73 EP - 79 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a5/ LA - en ID - DMGT_2004_24_1_a5 ER -
Galeana-Sánchez, Hortensia; Neumann-Lara, Víctor. On the heterochromatic number of circulant digraphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 73-79. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a5/
[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[2] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4.
[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.
[4] P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey Theorems (in: Infinite and Finite Sets, Keszthely, Hungary, 1973), Colloquia Mathematica Societatis János Bolyai 10 633-643.
[5] H. Galeana-Sánchez and V. Neumann-Lara, A class of tight circulant tournaments, Discuss. Math. Graph Theory 20 (2000) 109-128, doi: 10.7151/dmgt.1111.
[6] Y. Manoussakis, M. Spyratos, Zs. Tuza, M. Voigt, Minimal colorings for properly colored subgraphs, Graphs and Combinatorics 12 (1996) 345-360, doi: 10.1007/BF01858468.
[7] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.