On the heterochromatic number of circulant digraphs
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 73-79.

Voir la notice de l'article provenant de la source Library of Science

The heterochromatic number hc(D) of a digraph D, is the minimum integer k such that for every partition of V(D) into k classes, there is a cyclic triangle whose three vertices belong to different classes.
Keywords: circulant tournament, vertex colouring, heterochromatic number, heterochromatic triangle
@article{DMGT_2004_24_1_a5,
     author = {Galeana-S\'anchez, Hortensia and Neumann-Lara, V{\'\i}ctor},
     title = {On the heterochromatic number of circulant digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {73--79},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a5/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Neumann-Lara, Víctor
TI  - On the heterochromatic number of circulant digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 73
EP  - 79
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a5/
LA  - en
ID  - DMGT_2004_24_1_a5
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Neumann-Lara, Víctor
%T On the heterochromatic number of circulant digraphs
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 73-79
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a5/
%G en
%F DMGT_2004_24_1_a5
Galeana-Sánchez, Hortensia; Neumann-Lara, Víctor. On the heterochromatic number of circulant digraphs. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 73-79. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a5/

[1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

[2] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4.

[3] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.

[4] P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey Theorems (in: Infinite and Finite Sets, Keszthely, Hungary, 1973), Colloquia Mathematica Societatis János Bolyai 10 633-643.

[5] H. Galeana-Sánchez and V. Neumann-Lara, A class of tight circulant tournaments, Discuss. Math. Graph Theory 20 (2000) 109-128, doi: 10.7151/dmgt.1111.

[6] Y. Manoussakis, M. Spyratos, Zs. Tuza, M. Voigt, Minimal colorings for properly colored subgraphs, Graphs and Combinatorics 12 (1996) 345-360, doi: 10.1007/BF01858468.

[7] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632.