A note on total colorings of planar graphs without 4-cycles
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 125-135.

Voir la notice de l'article provenant de la source Library of Science

Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ (7,4),(6,5),(5,7),(4,14).
Keywords: total coloring, planar graph, list coloring, girth
@article{DMGT_2004_24_1_a10,
     author = {Wang, Ping and Wu, Jian-Liang},
     title = {A note on total colorings of planar graphs without 4-cycles},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a10/}
}
TY  - JOUR
AU  - Wang, Ping
AU  - Wu, Jian-Liang
TI  - A note on total colorings of planar graphs without 4-cycles
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 125
EP  - 135
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a10/
LA  - en
ID  - DMGT_2004_24_1_a10
ER  - 
%0 Journal Article
%A Wang, Ping
%A Wu, Jian-Liang
%T A note on total colorings of planar graphs without 4-cycles
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 125-135
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a10/
%G en
%F DMGT_2004_24_1_a10
Wang, Ping; Wu, Jian-Liang. A note on total colorings of planar graphs without 4-cycles. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 125-135. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a10/

[1] J.A. Bondy and U.S.R. Murty (Graph Theory with Applications, North-Holland, 1976).

[2] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180.

[3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59, doi: 10.1002/(SICI)1097-0118(199709)26:153::AID-JGT6>3.0.CO;2-G

[4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152.

[5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigarphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780.

[6] J.L. Gross and T.W. Tucker (Topological Graph Theory, John and Wiley Sons, 1987).

[7] A.J.W. Hilton, Recent results on the total chromatic number, Discrete Math. 111 (1993) 323-331, doi: 10.1016/0012-365X(93)90167-R.

[8] T.R. Jensen and B. Toft (Graph Coloring Problems, John Wiley Sons, 1995).

[9] Peter C.B. Lam, B.G. Xu, and J.Z. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory (B) 76 (1999) 117-126, doi: 10.1006/jctb.1998.1893.

[10] A. Sanchez-Arroyo, Determining the total coloring number is NP-hard, Discrete Math. 78 (1989) 315-319, doi: 10.1016/0012-365X(89)90187-8.

[11] H.P. Yap, Total colourings of graphs, Lecture Notes in Mathematics 1623 (Springer, 1996).