Hamilton cycles in split graphs with large minimum degree
Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 23-40.

Voir la notice de l'article provenant de la source Library of Science

A graph G is called a split graph if the vertex-set V of G can be partitioned into two subsets V₁ and V₂ such that the subgraphs of G induced by V₁ and V₂ are empty and complete, respectively. In this paper, we characterize hamiltonian graphs in the class of split graphs with minimum degree δ at least |V₁| - 2.
Keywords: Hamilton cycle, split graph, bipartite graph
@article{DMGT_2004_24_1_a1,
     author = {Tan, Ngo and Hung, Le},
     title = {Hamilton cycles in split graphs with large minimum degree},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--40},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a1/}
}
TY  - JOUR
AU  - Tan, Ngo
AU  - Hung, Le
TI  - Hamilton cycles in split graphs with large minimum degree
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2004
SP  - 23
EP  - 40
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a1/
LA  - en
ID  - DMGT_2004_24_1_a1
ER  - 
%0 Journal Article
%A Tan, Ngo
%A Hung, Le
%T Hamilton cycles in split graphs with large minimum degree
%J Discussiones Mathematicae. Graph Theory
%D 2004
%P 23-40
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a1/
%G en
%F DMGT_2004_24_1_a1
Tan, Ngo; Hung, Le. Hamilton cycles in split graphs with large minimum degree. Discussiones Mathematicae. Graph Theory, Tome 24 (2004) no. 1, pp. 23-40. http://geodesic.mathdoc.fr/item/DMGT_2004_24_1_a1/

[1] M. Behzad and G. Chartrand, Introduction to the theory of graphs (Allyn and Bacon, Boston, 1971).

[2] R.E. Burkard and P.L. Hammer, A note on hamiltonian split graphs, J. Combin. Theory 28 (1980) 245-248, doi: 10.1016/0095-8956(80)90069-6.

[3] V. Chvatal, New directions in hamiltonian graph theory, in: New directions in the theory of graphs (Proc. Third Ann Arbor Conf. Graph Theory, Univ. Michigan, Ann Arbor, Mich., 1971), pp. 65-95, Acad. Press, NY 1973.

[4] V. Chvatal and P. Erdős, A note on hamiltonian circiuts, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9.

[5] V. Chvatal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977) 145-162, doi: 10.1016/S0167-5060(08)70731-3.

[6] S. Foldes, P.L. Hammer, Split graphs, in: Proceedings of the Eighth Southeastern conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315. Congressus Numerantium, No XIX, Utilitas Math., Winnipeg, Man., 1977.

[7] S. Foldes and P.L. Hammer, On a class of matroid-producing graphs, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely 1976) Vol. 1, 331-352, Colloq. Math. Soc. Janós Bolyai, 18 (North-Holland, Amsterdam-New York, 1978).

[8] R.J. Gould, Updating the hamiltonian problem, a survey, J. Graph Theory 15 (1991) 121-157, doi: 10.1002/jgt.3190150204.

[9] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26.

[10] F. Harary and U. Peled, Hamiltonian threshold graphs, Discrete Appl. Math. 16 (1987) 11-15, doi: 10.1016/0166-218X(87)90050-3.

[11] B. Jackson and O. Ordaz, Chvatal-Erdős conditions for paths and cycles in graphs and digraphs, a survey, Discrete Math. 84 (1990) 241-254, doi: 10.1016/0012-365X(90)90130-A.

[12] J. Peemöller, Necessary conditions for hamiltonian split graphs, Discrete Math. 54 (1985) 39-47.

[13] U.N. Peled, Regular Boolean functions and their polytope, Chapter VI (Ph. D. Thesis, Univ. of Waterloo, Dep. Combin. and Optimization, 1975).

[14] S.B. Rao, Solution of the hamiltonian problem for self-complementary graphs, J. Combin. Theory (B) 27 (1979) 13-41, doi: 10.1016/0095-8956(79)90065-0.