Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2003_23_2_a8, author = {Nesetril, Jaroslav and Tardif, Claude}, title = {On maximal finite antichains in the homomorphism order of directed graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {325--332}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a8/} }
TY - JOUR AU - Nesetril, Jaroslav AU - Tardif, Claude TI - On maximal finite antichains in the homomorphism order of directed graphs JO - Discussiones Mathematicae. Graph Theory PY - 2003 SP - 325 EP - 332 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a8/ LA - en ID - DMGT_2003_23_2_a8 ER -
%0 Journal Article %A Nesetril, Jaroslav %A Tardif, Claude %T On maximal finite antichains in the homomorphism order of directed graphs %J Discussiones Mathematicae. Graph Theory %D 2003 %P 325-332 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a8/ %G en %F DMGT_2003_23_2_a8
Nesetril, Jaroslav; Tardif, Claude. On maximal finite antichains in the homomorphism order of directed graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 2, pp. 325-332. http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a8/
[1] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38, doi: 10.4153/CJM-1959-003-9.
[2] P. Hell, J. Nesetril and X. Zhu, Duality and polynomial testing of tree homomorphisms, Trans. Amer. Math. Soc. 348 (1996) 1281-1297, doi: 10.1090/S0002-9947-96-01537-1.
[3] P. Hell, H. Zhou and X. Zhu, Homomorphisms to oriented cycles, Combinatorica 13 421-433, doi: 10.1007/BF01303514.
[4] P. Hell and X. Zhu, The existence of homomorphisms to oriented cycles, SIAM J. on Disc. Math. 8 (1995) 208-222.
[5] P. Komárek, Good characterisations in the class of oriented graphs (in Czech), Ph. D. Thesis (Charles University, Prague, 1987).
[6] P. Komárek, Some new good characterizations for directed graphs, Casopis Pest. Mat. 109 (1984) 348-354.
[7] J. Nesetril and A. Pultr, On classes of relations and graphs determined by subobjects and factorobjects, Discrete Math. 22 (1978) 287-300, doi: 10.1016/0012-365X(78)90062-6.
[8] J. Nesetril and S. Shelah, On the Order of Countable Graphs, ITI Series 200-002 (to appear in European J. Combin.).
[9] J. Nesetril and C. Tardif, Duality Theorems for Finite Structures (Characterizing Gaps and Good Characterizations), J. Combin. Theory (B) 80 (2000) 80-97, doi: 10.1006/jctb.2000.1970.
[10] J. Nesetril and C. Tardif, Density via Duality, Theoret. Comp. Sci. 287 (2002) 585-591, doi: 10.1016/S0304-3975(01)00263-8.
[11] J. Nesetril and X. Zhu, Path homomorphisms, Math. Proc. Cambridge Philos. Soc. 120 (1996) 207-220, doi: 10.1017/S0305004100074806.