Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2003_23_2_a2, author = {Bre\v{s}ar, Bostjan and Imrich, Wilfried and Klav\v{z}ar, Sandi}, title = {Tree-like isometric subgraphs of hypercubes}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {227--240}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a2/} }
TY - JOUR AU - Brešar, Bostjan AU - Imrich, Wilfried AU - Klavžar, Sandi TI - Tree-like isometric subgraphs of hypercubes JO - Discussiones Mathematicae. Graph Theory PY - 2003 SP - 227 EP - 240 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a2/ LA - en ID - DMGT_2003_23_2_a2 ER -
Brešar, Bostjan; Imrich, Wilfried; Klavžar, Sandi. Tree-like isometric subgraphs of hypercubes. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 2, pp. 227-240. http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a2/
[1] F. Aurenhammer and J. Hagauer, Recognizing binary Hamming graphs in O(n²log n) time, Math. Systems Theory 28 (1995) 387-396, doi: 10.1007/BF01185863.
[2] H.-J. Bandelt, Retracts of hypercubes, J. Graph Theory 8 (1984) 501-510, doi: 10.1002/jgt.3190080407.
[3] H.-J. Bandelt and E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory (B) 51 (1991) 34-45, doi: 10.1016/0095-8956(91)90004-4.
[4] H.-J. Bandelt, M. van de Vel, A fixed cube theorem for median graphs, Discrete Math. 62 (1987) 129-137, doi: 10.1016/0012-365X(87)90022-7.
[5] H.-J. Bandelt and M. van de Vel, Superextensions and the depth of median graphs, J. Combin. Theory (A) 57 (1991) 187-202, doi: 10.1016/0097-3165(91)90044-H.
[6] B. Brešar, W. Imrich and S. Klavžar, Fast recognition algorithms for classes of partial cubes, Discrete Appl. Math., in press.
[7] B. Brešar, W. Imrich, S. Klavžar, H.M. Mulder and R. Skrekovski, Tiled partial cubes, J. Graph Theory 40 (2002) 91-103, doi: 10.1002/jgt.10031.
[8] B. Brešar, S. Klavžar, R. Skrekovski, Cubes polynomial and its derivatives, Electron. J. Combin. 10 (2003) #R3, pp. 11.
[9] V. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics 1 (1988) 6-10, doi: 10.1007/BF01069520.
[10] V. Chepoi, Bridged graphs are cop-win graphs: an algorithmic proof, J. Combin. Theory (B) 69 (1997) 97-100, doi: 10.1006/jctb.1996.1726.
[11] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory (B) 14 (1973) 263-267, doi: 10.1016/0095-8956(73)90010-5.
[12] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. 6 (1938) 239-250.
[13] J. Hagauer, W. Imrich and S. Klavžar, Recognizing median graphs in subquadratic time, Theoret. Comput. Sci. 215 (1999) 123-136, doi: 10.1016/S0304-3975(97)00136-9.
[14] W. Imrich and S. Klavžar, A convexity lemma and expansion procedures for bipartite graphs, European J. Combin. 19 (1998) 677-685, doi: 10.1006/eujc.1998.0229.
[15] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley Sons, New York, 2000).
[16] W. Imrich, S. Klavžar, and H.M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494.
[17] S. Klavžar and A. Lipovec, Partial cubes as subdivision graphs and as generalized Petersen graphs, Discrete Math. 263 (2003) 157-165, doi: 10.1016/S0012-365X(02)00575-7.
[18] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127.
[19] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204, doi: 10.1016/0012-365X(78)90199-1.
[20] H.M. Mulder, n-Cubes and median graphs, J. Graph Theory 4 (1980) 107-110, doi: 10.1002/jgt.3190040112.
[21] H.M. Mulder, The Interval Function of a Graph, (Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980).
[22] H.M. Mulder, The expansion procedure for graphs, in: R. Bodendiek (ed.), Contemporary Methods in Graph Theory (Wissenschaftsverlag, Mannheim, 1990) 459-477.
[23] R. Nowakowski and I. Rival, Fixed-edge theorem for graphs with loops, J. Graph Theory 3 (1979) 339-350, doi: 10.1002/jgt.3190030404.
[24] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239, doi: 10.1016/0012-365X(83)90160-7.
[25] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515-525, doi: 10.4153/CJM-1957-060-7.
[26] R. Skrekovski, Two relations for median graphs, Discrete Math. 226 (2001) 351-353, doi: 10.1016/S0012-365X(00)00120-5.
[27] P.S. Soltan and V. Chepoi, Solution of the Weber problem for discrete median metric spaces, (Russian) Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 85 (1987) 52-76.
[28] C. Tardif, Prefibers and the Cartesian product of metric spaces, Discrete Math. 109 (1992) 283-288, doi: 10.1016/0012-365X(92)90298-T.
[29] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225, doi: 10.1016/0166-218X(84)90069-6.