Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2003_23_2_a10, author = {Polat, Norbert}, title = {On dually compact closed classes of graphs and {BFS-constructible} graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {365--381}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a10/} }
TY - JOUR AU - Polat, Norbert TI - On dually compact closed classes of graphs and BFS-constructible graphs JO - Discussiones Mathematicae. Graph Theory PY - 2003 SP - 365 EP - 381 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a10/ LA - en ID - DMGT_2003_23_2_a10 ER -
Polat, Norbert. On dually compact closed classes of graphs and BFS-constructible graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 2, pp. 365-381. http://geodesic.mathdoc.fr/item/DMGT_2003_23_2_a10/
[1] R.P. Anstee and M. Farber, On bridged graphs and cop-win graphs, J. Combin. Theory (B) 44 (1988) 22-28, doi: 10.1016/0095-8956(88)90093-7.
[2] M. Chastand, F. Laviolette and N. Polat, On constructible graphs, infinite bridged graphs and weakly cop-win graphs, Discrete Math. 224 (2000) 61-78, doi: 10.1016/S0012-365X(00)00127-8.
[3] G. Hahn, F. Laviolette, N. Sauer and R.E. Woodrow, On cop-win graphs, preprint, 1989.
[4] G. Hahn, N. Sands, N. Sauer and R.E. Woodrow, Problem Session, in: Colloque Franco-Canadien de Combinatoire (Université de Montréal, 1981).
[5] G. Hahn, N. Sauer and R.E. Woodrow, personal communication.
[6] J. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65-76, doi: 10.1007/BF02566944.
[7] W. Imrich and S. Klavžar, Product graphs (Wiley, 2000).
[8] E. Jawhari, D. Misane and M. Pouzet, Retracts: Graphs and ordered sets from the metric point of view, Contemp. Math. 57 (1986) 175-226, doi: 10.1090/conm/057/856237.
[9] R. Nowakowski and I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223-234, doi: 10.1016/0012-365X(83)90159-0.
[10] E. Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585-598, doi: 10.1002/jgt.3190110416.
[11] N. Polat, Invariant subgraph properties in pseudo-modular graphs, Discrete Math. 207 (2000) 199-217, doi: 10.1016/S0012-365X(99)00045-X.
[12] N. Polat, On infinite bridged graphs and strongly dismantlable graphs, Discrete Math. 211 (2000) 153-166, doi: 10.1016/S0012-365X(99)00142-9.
[13] N. Polat, On isometric subgraphs of infinite bridged graphs and geodesic convexity, Discrete Math. 244 (2002) 399-416, doi: 10.1016/S0012-365X(01)00097-8.
[14] M. Pouzet, Une approche métrique de la rétraction dans les ensembles ordonnés et les graphes, Compte-rendu des Journées infinitistes de Lyon (octobre 1984), Pub. Dépt. Math. (Lyon, 1985).
[15] M. Pouzet, Retracts: recent and old results on graphs, ordered sets and metric spaces, Circulating manuscript, 29 pages, Nov. 1983.
[16] A. Quilliot, Homomorphismes, points fixes, rétractions et jeux de poursuite dans les graphes, les ensembles ordonnés et les espaces métriques, Thrèse de doctorat d'Etat (Univ. Paris VI, 1983).
[17] V. Soltan and V. Chepoi, Conditions for invariance of set diameters under d-convexification, Cybernetics 19 (1983) 750-756, doi: 10.1007/BF01068561.
[18] C. Tardif, On compact median graphs, J. Graph Theory 23 (1996) 325-336, doi: 10.1002/(SICI)1097-0118(199612)23:4325::AID-JGT1>3.0.CO;2-T