The Ramsey number r(C₇,C₇,C₇)
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 141-158.

Voir la notice de l'article provenant de la source Library of Science

Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.
Keywords: Ramsey numbers, extremal graphs
@article{DMGT_2003_23_1_a9,
     author = {Faudree, Ralph and Schelten, Annette and Schiermeyer, Ingo},
     title = {The {Ramsey} number {r(C₇,C₇,C₇)}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/}
}
TY  - JOUR
AU  - Faudree, Ralph
AU  - Schelten, Annette
AU  - Schiermeyer, Ingo
TI  - The Ramsey number r(C₇,C₇,C₇)
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 141
EP  - 158
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/
LA  - en
ID  - DMGT_2003_23_1_a9
ER  - 
%0 Journal Article
%A Faudree, Ralph
%A Schelten, Annette
%A Schiermeyer, Ingo
%T The Ramsey number r(C₇,C₇,C₇)
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 141-158
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/
%G en
%F DMGT_2003_23_1_a9
Faudree, Ralph; Schelten, Annette; Schiermeyer, Ingo. The Ramsey number r(C₇,C₇,C₇). Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 141-158. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/

[1] A. Bialostocki and J. Schönheim, On Some Turan and Ramsey Numbers for C₄, Graph Theory and Combinatorics, Academic Press, London, (1984) 29-33.

[2] J.A. Bondy and P. Erdős, Ramsey Numbers for Cycles in Graphs, J. Combin. Theory (B) 14 (1973) 46-54.

[3] S. Brandt, A Sufficient Condition for all Short Cycles, Discrete Applied Math. 79 (1997) 63-66.

[4] S. Brandt and H.J. Veldman, Degree sums for edges and cycle lengths in graphs, J. Graph Theory 25 (1997) 253-256.

[5] V. Chvátal, On Hamiltonian's Ideals, J. Combin. Theory (B) 12 (1972) 163-168.

[6] C. Clapham, The Ramsey Number r(C₄,C₄,C₄), Periodica Mathematica Hungarica 18 (1987) 317-318.

[7] P. Erdős, On the Combinatorial Problems which I would most Like to See Solved, Combinatorica 1 (1981) 25-42.

[8] R.J. Faudree and R.H. Schelp, All Ramsey Numbers for Cycles in Graphs, Discrete Math. 8 (1974) 313-329.

[9] R.E. Greenwood and A.M. Gleason, Combinatorial Relations and Chromatic Graphs, Canadian J. Math. 7 (1995) 1-7.

[10] T. Łuczak, R(Cₙ,Cₙ,Cₙ) ≤ (4+o(1))n, J. Combin. Theory (B) 75 (1999) 174-187.

[11] S.P. Radziszowski, Small Ramsey Numbers, Electronic J. Combin. 1 (1994) update 2001.

[12] A. Schelten, Bestimmung von Ramsey-Zahlen zweier und dreier Graphen (Dissertation, TU Bergakademie Freiberg, 2000).

[13] P. Rowlinson amd Yang Yuangsheng, On the Third Ramsey Numbers of Graphs with Five Edges, J. Combin. Math. and Combin. Comp. 11 (1992) 213-222.

[14] P. Rowlinson and Yang Yuangsheng, On Graphs without 6-Cycles and Related Ramsey Numbers, Utilitas Mathematica 44 (1993) 192-196.