The Ramsey number r(C₇,C₇,C₇)
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 141-158

Voir la notice de l'article provenant de la source Library of Science

Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.
Keywords: Ramsey numbers, extremal graphs
@article{DMGT_2003_23_1_a9,
     author = {Faudree, Ralph and Schelten, Annette and Schiermeyer, Ingo},
     title = {The {Ramsey} number {r(C₇,C₇,C₇)}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {141--158},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/}
}
TY  - JOUR
AU  - Faudree, Ralph
AU  - Schelten, Annette
AU  - Schiermeyer, Ingo
TI  - The Ramsey number r(C₇,C₇,C₇)
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 141
EP  - 158
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/
LA  - en
ID  - DMGT_2003_23_1_a9
ER  - 
%0 Journal Article
%A Faudree, Ralph
%A Schelten, Annette
%A Schiermeyer, Ingo
%T The Ramsey number r(C₇,C₇,C₇)
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 141-158
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/
%G en
%F DMGT_2003_23_1_a9
Faudree, Ralph; Schelten, Annette; Schiermeyer, Ingo. The Ramsey number r(C₇,C₇,C₇). Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 141-158. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/