The Ramsey number r(C₇,C₇,C₇)
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 141-158
Voir la notice de l'article provenant de la source Library of Science
Bondy and Erdős [2] have conjectured that the Ramsey number for three cycles Cₖ of odd length has value r(Cₖ,Cₖ,Cₖ) = 4k-3. We give a proof that r(C₇,C₇,C₇) = 25 without using any computer support.
Keywords:
Ramsey numbers, extremal graphs
@article{DMGT_2003_23_1_a9,
author = {Faudree, Ralph and Schelten, Annette and Schiermeyer, Ingo},
title = {The {Ramsey} number {r(C₇,C₇,C₇)}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {141--158},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/}
}
TY - JOUR AU - Faudree, Ralph AU - Schelten, Annette AU - Schiermeyer, Ingo TI - The Ramsey number r(C₇,C₇,C₇) JO - Discussiones Mathematicae. Graph Theory PY - 2003 SP - 141 EP - 158 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/ LA - en ID - DMGT_2003_23_1_a9 ER -
Faudree, Ralph; Schelten, Annette; Schiermeyer, Ingo. The Ramsey number r(C₇,C₇,C₇). Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 141-158. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a9/