Prime ideals in the lattice of additive induced-hereditary graph properties
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 117-127.

Voir la notice de l'article provenant de la source Library of Science

An additive induced-hereditary property of graphs is any class of finite simple graphs which is closed under isomorphisms, disjoint unions and induced subgraphs. The set of all additive induced-hereditary properties of graphs, partially ordered by set inclusion, forms a completely distributive lattice. We introduce the notion of the join-decomposability number of a property and then we prove that the prime ideals of the lattice of all additive induced-hereditary properties are divided into two groups, determined either by a set of excluded join-irreducible properties or determined by a set of excluded properties with infinite join-decomposability number. We provide non-trivial examples of each type.
Keywords: hereditary graph property, prime ideal, distributive lattice, induced subgraphs
@article{DMGT_2003_23_1_a7,
     author = {Berger, Amelie and Mih\'ok, Peter},
     title = {Prime ideals in the lattice of additive induced-hereditary graph properties},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {117--127},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a7/}
}
TY  - JOUR
AU  - Berger, Amelie
AU  - Mihók, Peter
TI  - Prime ideals in the lattice of additive induced-hereditary graph properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 117
EP  - 127
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a7/
LA  - en
ID  - DMGT_2003_23_1_a7
ER  - 
%0 Journal Article
%A Berger, Amelie
%A Mihók, Peter
%T Prime ideals in the lattice of additive induced-hereditary graph properties
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 117-127
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a7/
%G en
%F DMGT_2003_23_1_a7
Berger, Amelie; Mihók, Peter. Prime ideals in the lattice of additive induced-hereditary graph properties. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a7/

[1] A. Berger, I. Broere, P. Mihók and S. Moagi, Meet- and join-irreducibility of additive hereditary properties of graphs, Discrete Math. 251 (2002) 11-18, doi: 10.1016/S0012-365X(01)00323-5.

[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.

[4] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D.S. Scott, A Compendium of Continuous Lattices (Springer-Verlag, 1980).

[5] G. Grätzer, General Lattice Theory (Second edition, Birkhäuser Verlag, Basel, Boston, Berlin 1998).

[6] J. Jakubík, On the lattice of additive hereditary properties of finite graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73-86.

[7] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).

[8] E.R. Scheinerman, Characterizing intersection classes of graphs, Discrete Math. 55 (1985) 185-193, doi: 10.1016/0012-365X(85)90047-0.

[9] E.R. Scheinerman, On the structure of hereditary classes of graphs, J. Graph Theory 10 (1986) 545-551.