On cyclically embeddable (n,n)-graphs
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 85-104.

Voir la notice de l'article provenant de la source Library of Science

An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider the embeddable (n,n)-graphs. We prove that with few exceptions the corresponding permutation may be chosen as cyclic one.
Keywords: packing of graphs, cyclic permutation
@article{DMGT_2003_23_1_a5,
     author = {G\"orlich, Agnieszka and Pil\'sniak, Monika and Wo\'zniak, Mariusz},
     title = {On cyclically embeddable (n,n)-graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {85--104},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a5/}
}
TY  - JOUR
AU  - Görlich, Agnieszka
AU  - Pilśniak, Monika
AU  - Woźniak, Mariusz
TI  - On cyclically embeddable (n,n)-graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 85
EP  - 104
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a5/
LA  - en
ID  - DMGT_2003_23_1_a5
ER  - 
%0 Journal Article
%A Görlich, Agnieszka
%A Pilśniak, Monika
%A Woźniak, Mariusz
%T On cyclically embeddable (n,n)-graphs
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 85-104
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a5/
%G en
%F DMGT_2003_23_1_a5
Görlich, Agnieszka; Pilśniak, Monika; Woźniak, Mariusz. On cyclically embeddable (n,n)-graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 85-104. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a5/

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).

[2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory 25 (B) (1978) 105-124.

[3] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[4] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996.

[5] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31:106 (1981) 53-62.

[6] T. Gangopadhyay, Packing graphs in their complements, Discrete Math. 186 (1998) 117-124, doi: 10.1016/S0012-365X(97)00186-6.

[7] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combin. 4 (1977) 133-142.

[8] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. Math. Sci. 1 (1978) 335-338, doi: 10.1155/S0161171278000356.

[9] M. Woźniak, Packing of Graphs, Dissertationes Math. 362 (1997) pp.78.

[10] M. Woźniak, On cyclically embeddable graphs, Discuss. Math. Graph Theory 19 (1999) 241-248, doi: 10.7151/dmgt.1099.

[11] M. Woźniak, On cyclically embeddable (n,n-1)-graphs, Discrete Math. 251 (2002) 173-179.

[12] H.P. Yap, Some Topics In Graph Theory, London Mathematical Society, Lectures Notes Series 108 (Cambridge University Press, Cambridge, 1986).

[13] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404.