On non-z(mod k) dominating sets
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 189-199.

Voir la notice de l'article provenant de la source Library of Science

For a graph G, a positive integer k, k ≥ 2, and a non-negative integer with z k and z ≠ 1, a subset D of the vertex set V(G) is said to be a non-z (mod k) dominating set if D is a dominating set and for all x ∈ V(G), |N[x]∩D| ≢ z (mod k).For the case k = 2 and z = 0, it has been shown that these sets exist for all graphs. The problem for k ≥ 3 is unknown (the existence for even values of k and z = 0 follows from the k = 2 case.) It is the purpose of this paper to show that for k ≥ 3 and with z k and z ≠ 1, that a non-z(mod k) dominating set exist for all trees. Also, it will be shown that for k ≥ 4, z ≥ 1, 2 or 3 that any unicyclic graph contains a non-z(mod k) dominating set. We also give a few special cases of other families of graphs for which these dominating sets must exist.
Keywords: dominating set, tree, unicyclic graph
@article{DMGT_2003_23_1_a13,
     author = {Caro, Yair and Jacobson, Michael},
     title = {On non-z(mod k) dominating sets},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {189--199},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a13/}
}
TY  - JOUR
AU  - Caro, Yair
AU  - Jacobson, Michael
TI  - On non-z(mod k) dominating sets
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 189
EP  - 199
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a13/
LA  - en
ID  - DMGT_2003_23_1_a13
ER  - 
%0 Journal Article
%A Caro, Yair
%A Jacobson, Michael
%T On non-z(mod k) dominating sets
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 189-199
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a13/
%G en
%F DMGT_2003_23_1_a13
Caro, Yair; Jacobson, Michael. On non-z(mod k) dominating sets. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 189-199. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a13/

[1] A. Amin and P. Slater, Neighborhood Domination with Parity Restriction in Graphs, Congr. Numer. 91 (1992) 19-30.

[2] A. Amin and P. Slater, All Parity Realizable Trees, J. Combin. Math. Combin. Comput. 20 (1996) 53-63.

[3] Y. Caro, Simple Proofs to Three Parity Theorems, Ars Combin. 42 (1996) 175-180.

[4] Y. Caro and W.F. Klostermeyer, The odd domination number of a graph, to appear in J. Combin. Math. Combin. Comput.

[5] Y. Caro, J. Goldwasser and W. Klostermeyer, Odd and Residue Domination Numbers of a Graph, Discuss. Math. Graph Theory 21 (2001) 119-136, doi: 10.7151/dmgt.1137.

[6] J. Goldwasser and W. Klostermeyer, Maximization Versions of Lights Out Games in Grids and Graphs, Congr. Numer. 126 (1997) 99-111.

[7] K. Sutner, Linear Cellular Automata and the Garden-of-Eden, Mathematical Intelligencer 11 (2) (1989) 49-53.