The size of minimum 3-trees: cases 0 and 1 mod 12
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 177-187.

Voir la notice de l'article provenant de la source Library of Science

A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-coloring of its vertex set there is a heterochromatic triple and the hypergraph has the minimum possible number of triples. There is a conjecture that the number of triples in such 3-tree is ⎡(n(n-2))/3⎤ for any number of vertices n. Here we give a proof of this conjecture for any n ≡ 0,1 mod 12.
Keywords: tight hypergraphs, triple systems
@article{DMGT_2003_23_1_a12,
     author = {Arocha, Jorge and Tey, Joaqu{\'\i}n},
     title = {The size of minimum 3-trees: cases 0 and 1 mod 12},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a12/}
}
TY  - JOUR
AU  - Arocha, Jorge
AU  - Tey, Joaquín
TI  - The size of minimum 3-trees: cases 0 and 1 mod 12
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 177
EP  - 187
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a12/
LA  - en
ID  - DMGT_2003_23_1_a12
ER  - 
%0 Journal Article
%A Arocha, Jorge
%A Tey, Joaquín
%T The size of minimum 3-trees: cases 0 and 1 mod 12
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 177-187
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a12/
%G en
%F DMGT_2003_23_1_a12
Arocha, Jorge; Tey, Joaquín. The size of minimum 3-trees: cases 0 and 1 mod 12. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 177-187. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a12/

[1] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405.

[2] J.L. Arocha and J. Tey, The size of minimum 3-trees: Cases 3 and 4 mod 6, J. Graph Theory 30 (1999) 157-166, doi: 10.1002/(SICI)1097-0118(199903)30:3157::AID-JGT1>3.0.CO;2-S

[3] J.L. Arocha and J. Tey, The size of minimum 3-trees: Case 2 mod 3, Bol. Soc. Mat. Mexicana (3) 8 no. 1 (2002) 1-4.

[4] L. Lovász, Topological and algebraic methods in graph theory, in: Graph Theory and Related Topics, Proceedings of Conference in Honour of W.T. Tutte, Waterloo, Ontario 1977, (Academic Press, New York, 1979) 1-14.