The size of minimum 3-trees: cases 0 and 1 mod 12
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 177-187
Voir la notice de l'article provenant de la source Library of Science
A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-coloring of its vertex set there is a heterochromatic triple and the hypergraph has the minimum possible number of triples. There is a conjecture that the number of triples in such 3-tree is ⎡(n(n-2))/3⎤ for any number of vertices n. Here we give a proof of this conjecture for any n ≡ 0,1 mod 12.
Keywords:
tight hypergraphs, triple systems
@article{DMGT_2003_23_1_a12,
author = {Arocha, Jorge and Tey, Joaqu{\'\i}n},
title = {The size of minimum 3-trees: cases 0 and 1 mod 12},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {177--187},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a12/}
}
Arocha, Jorge; Tey, Joaquín. The size of minimum 3-trees: cases 0 and 1 mod 12. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 177-187. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a12/