Upper bounds for the domination numbers of toroidal queens graphs
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 163-175.

Voir la notice de l'article provenant de la source Library of Science

We determine upper bounds for γ(Qn^t) and i(Qₙ^t), the domination and independent domination numbers, respectively, of the graph Qₙ^t obtained from the moves of queens on the n×n chessboard drawn on the torus.
Keywords: queens graph, toroidal chessboards, queens domination problem
@article{DMGT_2003_23_1_a11,
     author = {Mynhardt, Christina},
     title = {Upper bounds for the domination numbers of toroidal queens graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a11/}
}
TY  - JOUR
AU  - Mynhardt, Christina
TI  - Upper bounds for the domination numbers of toroidal queens graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 163
EP  - 175
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a11/
LA  - en
ID  - DMGT_2003_23_1_a11
ER  - 
%0 Journal Article
%A Mynhardt, Christina
%T Upper bounds for the domination numbers of toroidal queens graphs
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 163-175
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a11/
%G en
%F DMGT_2003_23_1_a11
Mynhardt, Christina. Upper bounds for the domination numbers of toroidal queens graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 163-175. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a11/

[1] W. Ahrens, Mathematische Unterhalten und Spiele (B.G. Teubner, Leipzig-Berlin, 1910).

[2] M. Bezzel, Schachfreund, Berliner Schachzeitung, 3 (1848) 363.

[3] A.P. Burger, E.J. Cockayne and C.M. Mynhardt, Queens graphs for chessboards on the torus, Australas. J. Combin. 24 (2001) 231-246.

[4] A.P. Burger and C.M. Mynhardt, Symmetry and domination in queens graphs, Bulletin of the ICA 29 (2000) 11-24.

[5] A.P. Burger and C.M. Mynhardt, Properties of dominating sets of the queens graph $Q{4k+3}$, Utilitas Math. 57 (2000) 237-253.

[6] A.P. Burger and C.M. Mynhardt, An improved upper bound for queens domination numbers, Discrete Math., to appear.

[7] A.P. Burger, C.M. Mynhardt and W.D. Weakley, The domination number of the toroidal queens graph of size 3k × 3k, Australas. J. Combin., to appear.

[8] E.J. Cockayne, Chessboard Domination Problems, Discrete Math. 86 (1990) 13-20, doi: 10.2307/2325220.

[9] P.R.J. Östergå rd and W.D. Weakley, Values of domination numbers of the queen's graph, Electron. J. Combin. 8 (2001) no. 1, Research paper 29, 19 pp.

[10] W.D. Weakley, Domination In The Queen's Graph, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory, Combinatorics, and Algorithms, Volume 2, pages 1223-1232 (Wiley-Interscience, New York, 1995).

[11] W.D. Weakley, A lower bound for domination numbers of the queen's graph, J. Combin. Math. Combin. Comput., to appear.

[12] W.D. Weakley, Upper bounds for domination numbers of the queen's graph, Discrete Math. 242 (2002) 229-243, doi:10.1016/S0012-365X(00)00467-2.