Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2003_23_1_a11, author = {Mynhardt, Christina}, title = {Upper bounds for the domination numbers of toroidal queens graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {163--175}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a11/} }
TY - JOUR AU - Mynhardt, Christina TI - Upper bounds for the domination numbers of toroidal queens graphs JO - Discussiones Mathematicae. Graph Theory PY - 2003 SP - 163 EP - 175 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a11/ LA - en ID - DMGT_2003_23_1_a11 ER -
Mynhardt, Christina. Upper bounds for the domination numbers of toroidal queens graphs. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 163-175. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a11/
[1] W. Ahrens, Mathematische Unterhalten und Spiele (B.G. Teubner, Leipzig-Berlin, 1910).
[2] M. Bezzel, Schachfreund, Berliner Schachzeitung, 3 (1848) 363.
[3] A.P. Burger, E.J. Cockayne and C.M. Mynhardt, Queens graphs for chessboards on the torus, Australas. J. Combin. 24 (2001) 231-246.
[4] A.P. Burger and C.M. Mynhardt, Symmetry and domination in queens graphs, Bulletin of the ICA 29 (2000) 11-24.
[5] A.P. Burger and C.M. Mynhardt, Properties of dominating sets of the queens graph $Q{4k+3}$, Utilitas Math. 57 (2000) 237-253.
[6] A.P. Burger and C.M. Mynhardt, An improved upper bound for queens domination numbers, Discrete Math., to appear.
[7] A.P. Burger, C.M. Mynhardt and W.D. Weakley, The domination number of the toroidal queens graph of size 3k × 3k, Australas. J. Combin., to appear.
[8] E.J. Cockayne, Chessboard Domination Problems, Discrete Math. 86 (1990) 13-20, doi: 10.2307/2325220.
[9] P.R.J. Östergå rd and W.D. Weakley, Values of domination numbers of the queen's graph, Electron. J. Combin. 8 (2001) no. 1, Research paper 29, 19 pp.
[10] W.D. Weakley, Domination In The Queen's Graph, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory, Combinatorics, and Algorithms, Volume 2, pages 1223-1232 (Wiley-Interscience, New York, 1995).
[11] W.D. Weakley, A lower bound for domination numbers of the queen's graph, J. Combin. Math. Combin. Comput., to appear.
[12] W.D. Weakley, Upper bounds for domination numbers of the queen's graph, Discrete Math. 242 (2002) 229-243, doi:10.1016/S0012-365X(00)00467-2.