2-placement of (p,q)-trees
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 23-36.

Voir la notice de l'article provenant de la source Library of Science

Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1.
Keywords: tree, bipartite graph, packing graph
@article{DMGT_2003_23_1_a1,
     author = {Orchel, Beata},
     title = {2-placement of (p,q)-trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--36},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a1/}
}
TY  - JOUR
AU  - Orchel, Beata
TI  - 2-placement of (p,q)-trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2003
SP  - 23
EP  - 36
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a1/
LA  - en
ID  - DMGT_2003_23_1_a1
ER  - 
%0 Journal Article
%A Orchel, Beata
%T 2-placement of (p,q)-trees
%J Discussiones Mathematicae. Graph Theory
%D 2003
%P 23-36
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a1/
%G en
%F DMGT_2003_23_1_a1
Orchel, Beata. 2-placement of (p,q)-trees. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a1/

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).

[2] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53-62.

[3] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A.

[4] M. Makheo, J.-F. Saclé and M. Woźniak, Edge-disjoint placement of three trees, European J. Combin. 17 (1996) 543-563, doi: 10.1006/eujc.1996.0047.

[5] B. Orchel, Placing bipartite graph of small size I, Folia Scientiarum Universitatis Technicae Resoviensis 118 (1993) 51-58.

[6] H. Wang and N. Saver, Packing three copies of a tree into a complete graph, European J. Combin. 14 (1993) 137-142.