2-placement of (p,q)-trees
Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 23-36
Cet article a éte moissonné depuis la source Library of Science
Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1.
Keywords:
tree, bipartite graph, packing graph
@article{DMGT_2003_23_1_a1,
author = {Orchel, Beata},
title = {2-placement of (p,q)-trees},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {23--36},
year = {2003},
volume = {23},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a1/}
}
Orchel, Beata. 2-placement of (p,q)-trees. Discussiones Mathematicae. Graph Theory, Tome 23 (2003) no. 1, pp. 23-36. http://geodesic.mathdoc.fr/item/DMGT_2003_23_1_a1/
[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[2] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53-62.
[3] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A.
[4] M. Makheo, J.-F. Saclé and M. Woźniak, Edge-disjoint placement of three trees, European J. Combin. 17 (1996) 543-563, doi: 10.1006/eujc.1996.0047.
[5] B. Orchel, Placing bipartite graph of small size I, Folia Scientiarum Universitatis Technicae Resoviensis 118 (1993) 51-58.
[6] H. Wang and N. Saver, Packing three copies of a tree into a complete graph, European J. Combin. 14 (1993) 137-142.