Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_2_a7, author = {Saenpholphat, Varaporn and Zhang, Ping}, title = {Connected partition dimensions of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {305--323}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a7/} }
Saenpholphat, Varaporn; Zhang, Ping. Connected partition dimensions of graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 305-323. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a7/
[1] G. Chartrand and L. Lesniak, Graphs Digraphs, third edition (Chapman Hall, New York, 1996).
[2] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Inter. J. Comput. Math. Appl. 39 (2000) 19-28, doi: 10.1016/S0898-1221(00)00126-7.
[3] G. Chartrand, E. Salehi and P. Zhang, On the partition dimension of a graph, Congress. Numer. 131 (1998) 55-66.
[4] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000) 45-54, doi: 10.1007/PL00000127.
[5] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[6] M.A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist. 3 (1993) 203-236, doi: 10.1080/10543409308835060.
[7] M.A. Johnson, Browsable structure-activity datasets, preprint.
[8] P.J. Slater, Leaves of trees, Congress. Numer. 14 (1975) 549-559.
[9] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.