Connected partition dimensions of graphs
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 305-323.

Voir la notice de l'article provenant de la source Library of Science

For a vertex v of a connected graph G and a subset S of V(G), the distance between v and S is d(v,S) = mind(v,x)|x ∈ S. For an ordered k-partition Π = S₁,S₂,...,Sₖ of V(G), the representation of v with respect to Π is the k-vector r(v|Π) = (d(v,S₁), d(v,S₂),..., d(v,Sₖ)). The k-partition Π is a resolving partition if the k-vectors r(v|Π), v ∈ V(G), are distinct. The minimum k for which there is a resolving k-partition of V(G) is the partition dimension pd(G) of G. A resolving partition Π = S₁,S₂,...,Sₖ of V(G) is connected if each subgraph 〈S_i〉 induced by S_i (1 ≤ i ≤ k) is connected in G. The minimum k for which there is a connected resolving k-partition of V(G) is the connected partition dimension cpd(G) of G. Thus 2 ≤ pd (G) ≤ cpd(G) ≤ n for every connected graph G of order n ≥ 2. The connected partition dimensions of several classes of well-known graphs are determined. It is shown that for every pair a, b of integers with 3 ≤ a ≤ b ≤ 2a-1, there is a connected graph G having pd(G) = a and cpd(G) = b. Connected graphs of order n ≥ 3 having connected partition dimension 2, n, or n-1 are characterized.
Keywords: distance, resolving partition, connected resolving partition
@article{DMGT_2002_22_2_a7,
     author = {Saenpholphat, Varaporn and Zhang, Ping},
     title = {Connected partition dimensions of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {305--323},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a7/}
}
TY  - JOUR
AU  - Saenpholphat, Varaporn
AU  - Zhang, Ping
TI  - Connected partition dimensions of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 305
EP  - 323
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a7/
LA  - en
ID  - DMGT_2002_22_2_a7
ER  - 
%0 Journal Article
%A Saenpholphat, Varaporn
%A Zhang, Ping
%T Connected partition dimensions of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 305-323
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a7/
%G en
%F DMGT_2002_22_2_a7
Saenpholphat, Varaporn; Zhang, Ping. Connected partition dimensions of graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 305-323. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a7/

[1] G. Chartrand and L. Lesniak, Graphs Digraphs, third edition (Chapman Hall, New York, 1996).

[2] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Inter. J. Comput. Math. Appl. 39 (2000) 19-28, doi: 10.1016/S0898-1221(00)00126-7.

[3] G. Chartrand, E. Salehi and P. Zhang, On the partition dimension of a graph, Congress. Numer. 131 (1998) 55-66.

[4] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000) 45-54, doi: 10.1007/PL00000127.

[5] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.

[6] M.A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist. 3 (1993) 203-236, doi: 10.1080/10543409308835060.

[7] M.A. Johnson, Browsable structure-activity datasets, preprint.

[8] P.J. Slater, Leaves of trees, Congress. Numer. 14 (1975) 549-559.

[9] P.J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988) 445-455.