Families of strongly projective graphs
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 271-292

Voir la notice de l'article provenant de la source Library of Science

We give several characterisations of strongly projective graphs which generalise in many respects odd cycles and complete graphs [7]. We prove that all known families of projective graphs contain only strongly projective graphs, including complete graphs, odd cycles, Kneser graphs and non-bipartite distance-transitive graphs of diameter d ≥ 3.
Keywords: distance-transitive graphs, graph homomorphism, graph product
@article{DMGT_2002_22_2_a5,
     author = {Larose, Benoit},
     title = {Families of strongly projective graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {271--292},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a5/}
}
TY  - JOUR
AU  - Larose, Benoit
TI  - Families of strongly projective graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 271
EP  - 292
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a5/
LA  - en
ID  - DMGT_2002_22_2_a5
ER  - 
%0 Journal Article
%A Larose, Benoit
%T Families of strongly projective graphs
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 271-292
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a5/
%G en
%F DMGT_2002_22_2_a5
Larose, Benoit. Families of strongly projective graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 271-292. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a5/