Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_2_a4, author = {Broere, Izak and Dorfling, Samantha and Jonck, Elizabeth}, title = {Generalized chromatic numbers and additive hereditary properties of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {259--270}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a4/} }
TY - JOUR AU - Broere, Izak AU - Dorfling, Samantha AU - Jonck, Elizabeth TI - Generalized chromatic numbers and additive hereditary properties of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2002 SP - 259 EP - 270 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a4/ LA - en ID - DMGT_2002_22_2_a4 ER -
%0 Journal Article %A Broere, Izak %A Dorfling, Samantha %A Jonck, Elizabeth %T Generalized chromatic numbers and additive hereditary properties of graphs %J Discussiones Mathematicae. Graph Theory %D 2002 %P 259-270 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a4/ %G en %F DMGT_2002_22_2_a4
Broere, Izak; Dorfling, Samantha; Jonck, Elizabeth. Generalized chromatic numbers and additive hereditary properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 259-270. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a4/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
[3] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068.
[4] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058.
[5] S.A. Burr and M.S. Jacobson, On inequalities involving vertex-partition parameters of graphs, Congr. Numer. 70 (1990) 159-170.
[6] G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271, doi: 10.1017/S0305004100042808.
[7] M. Frick and F. Bullock, Detour chromatic numbers, manuscript.
[8] P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász (J.A. University, Szeged, 1984).
[9] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
[10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#1715.
[11] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).
[12] J. Nesetril and V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolinae 17 (1976) 85-95; MR54#173.