Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_2_a3, author = {Cahit, Ibrahim}, title = {Some totally modular cordial graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {247--258}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a3/} }
Cahit, Ibrahim. Some totally modular cordial graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 247-258. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a3/
[1] W. Bange, A.E. Barkauskas and P.J. Slater, Simply sequential and graceful graphs, in: Proc. 10th S-E. Conf. Comb. Graph Theory and Computing (1979) 155-162.
[2] W. Bange, A.E. Barkauskas and P.J. Slater, Sequential additive graphs, Discrete Math. 44 (1983) 235-241, doi: 10.1016/0012-365X(83)90187-5.
[3] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-208.
[4] I. Cahit, On cordial and 3-equitable labellings of graphs, Utilitas Mathematica 37 (1990) 189-198.
[5] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 5 (1998) 1-43.
[6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canadian Math. Bull. 13 (4) 1970 451-461, doi: 10.4153/CMB-1970-084-1.
[7] A. Kotzig and A. Rosa, Magic valuations of complete graph (CRM-175, University of Montreal, March 1972).
[8] A. Kotzig, On well spread sets of integers (CRM-161, University of Montreal, February 1972).
[9] A. Kotzig, On magic valuations of trichromatic graphs (CRM-148, University of Montreal, December 1971).
[10] P.J. Slater, On k-sequentially and other numbered graphs, Discrete Math. 34 (1981) 185-193, doi: 10.1016/0012-365X(81)90066-2.
[11] Z. Szaniszló, k-equitable labellings of cycles and some other graphs, Ars Combin. 37 (1994) 49-63.