Trees with unique minimum total dominating sets
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 233-246.

Voir la notice de l'article provenant de la source Library of Science

A set S of vertices of a graph G is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. We provide three equivalent conditions for a tree to have a unique minimum total dominating set and give a constructive characterization of such trees.
Keywords: domination, total domination
@article{DMGT_2002_22_2_a2,
     author = {Haynes, Teresa and Henning, Michael},
     title = {Trees with unique minimum total dominating sets},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {233--246},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a2/}
}
TY  - JOUR
AU  - Haynes, Teresa
AU  - Henning, Michael
TI  - Trees with unique minimum total dominating sets
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 233
EP  - 246
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a2/
LA  - en
ID  - DMGT_2002_22_2_a2
ER  - 
%0 Journal Article
%A Haynes, Teresa
%A Henning, Michael
%T Trees with unique minimum total dominating sets
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 233-246
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a2/
%G en
%F DMGT_2002_22_2_a2
Haynes, Teresa; Henning, Michael. Trees with unique minimum total dominating sets. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 233-246. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a2/

[1] G. Chartrand and L. Lesniak, Graphs Digraphs, third edition (Chapman Hall, London, 1996).

[2] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.

[3] E. Cockayne, M.A. Henning and C.M. Mynhardt, Vertices contained in every minimum total dominating set of a tree, to appear in Discrete Math.

[4] O. Favaron, M.A. Henning, C.M. Mynhardt and J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34 (2000) 9-19, doi: 10.1002/(SICI)1097-0118(200005)34:19::AID-JGT2>3.0.CO;2-O

[5] G. Gunther, B. Hartnell, L.R. Markus and D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55-63.

[6] G. Gunther, B. Hartnell and D. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Appl. Math. 46 (1993) 167-172, doi: 10.1016/0166-218X(93)90026-K.

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater (eds), Domination in Graphs: Advanced Topics (Marcel Dekker, New York, 1998).

[9] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000) 21-45, doi: 10.1002/1097-0118(200009)35:121::AID-JGT3>3.0.CO;2-F

[10] G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245-251, doi: 10.1016/0012-365X(85)90177-3.