Generalized edge-chromatic numbers and additive hereditary properties of graphs
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 349-359.

Voir la notice de l'article provenant de la source Library of Science

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be hereditary properties of graphs. The generalized edge-chromatic number ρ'_() is defined as the least integer n such that ⊆ n. We investigate the generalized edge-chromatic numbers of the properties → H, ₖ, ₖ, *ₖ, ₖ and ₖ.
Keywords: property of graphs, additive, hereditary, generalized edge-chromatic number
@article{DMGT_2002_22_2_a10,
     author = {Dorfling, Michael and Dorfling, Samantha},
     title = {Generalized edge-chromatic numbers and additive hereditary properties of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {349--359},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a10/}
}
TY  - JOUR
AU  - Dorfling, Michael
AU  - Dorfling, Samantha
TI  - Generalized edge-chromatic numbers and additive hereditary properties of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 349
EP  - 359
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a10/
LA  - en
ID  - DMGT_2002_22_2_a10
ER  - 
%0 Journal Article
%A Dorfling, Michael
%A Dorfling, Samantha
%T Generalized edge-chromatic numbers and additive hereditary properties of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 349-359
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a10/
%G en
%F DMGT_2002_22_2_a10
Dorfling, Michael; Dorfling, Samantha. Generalized edge-chromatic numbers and additive hereditary properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 2, pp. 349-359. http://geodesic.mathdoc.fr/item/DMGT_2002_22_2_a10/

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[2] M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs, Report No. IM-3-99 (Institute of Mathematics, Technical University of Zielona Góra, 1999).

[3] I. Broere and M. J. Dorfling, The decomposability of additive hereditary properties of graphs, Discuss. Math. Graph Theory 20 (2000) 281-291, doi: 10.7151/dmgt.1127.

[4] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068.

[5] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270, doi: 10.7151/dmgt.1174.

[6] J. Nesetril and V. Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1 (2) (1981) 199-202, doi: 10.1007/BF02579274.