Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_1_a5, author = {Eisenbl\"atter, Andreas and Gr\"otschel, Martin and Koster, Arie}, title = {Frequency planning and ramifications of coloring}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {51--88}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a5/} }
TY - JOUR AU - Eisenblätter, Andreas AU - Grötschel, Martin AU - Koster, Arie TI - Frequency planning and ramifications of coloring JO - Discussiones Mathematicae. Graph Theory PY - 2002 SP - 51 EP - 88 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a5/ LA - en ID - DMGT_2002_22_1_a5 ER -
Eisenblätter, Andreas; Grötschel, Martin; Koster, Arie. Frequency planning and ramifications of coloring. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 51-88. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a5/
[1] K.I. Aardal, A. Hipolito, C.P.M. van Hoesel and B. Jansen, A branch-and-cut algorithm for the frequency assignment problem, Research Memorandum 96/011 (Maastricht University, 1996). Available at http://www.unimaas.nl/~svhoesel/.
[2] K.I. Aardal, C.P.M. van Hoesel, A.M.C.A. Koster, C. Mannino and A. Sassano, Models and solution techniques for frequency assignment problems, ZIB Report 01-40 (Konrad-Zuse-Zentrum, Berlin, 2001). Available at http://www.zib.de/PaperWeb/abstracts/ZR-01-40.
[3] K.I. Aardal, C.A.J. Hurkens, J.K. Lenstra and S.R. Tiourine, Algorithms for frequency assignment: the CALMA project, to appear in Operations Research.
[4] S.M. Allen, D.H. Smith and S. Hurley, Lower bounding techniques for frequency assignment, Discrete Math. 197/198 (1999) 41-52
[5] L.G. Anderson, A simulation study of some dynamic channel assignment algorithms in a high capacity mobile telecommunications system, IEEE Transactions on Communications 21 (1973) 1294-1301, doi: 10.1109/TCOM.1973.1091583.
[6] D. Applegate, R. Bixby, V. Chvátal and W. Cook, On the solution of traveling salesman problems, in: Proceedings of the International Congress of Mathematicians Berlin 1998, volume III of Documenta Mathematica, DMV, 1998.
[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M. Protasi, Complexity and Approximation: combinatorial optimization problems and their approximability properties (Springer-Verlag, 1999).
[8] M. Bellare, O. Goldreich and M. Sudan, Free bits, pcps and non-approximability-towards tight results, SIAM Journal on Computing 27 (1998) 804-915, doi: 10.1137/S0097539796302531.
[9] H.P. van Benthem, GRAPH generating radio link frequency assignment problems heuristically (Master's thesis, Delft University of Technology, 1995).
[10] M. Biró, M. Hujter and Zs. Tuza, Precoloring extension. I: interval graphs, Discrete Math. 100 (1992) 267-279, doi: 10.1016/0012-365X(92)90646-W.
[11] R. Borndörfer, A. Eisenblätter, M. Grötschel and A. Martin, Frequency assignment in cellular phone networks, Annals of Operations Research 76 (1998) 73-93, doi: 10.1023/A:1018908907763.
[12] F. Box, A heuristic technique for assigning frequencies to mobile radio nets, IEEE Transactions on Vehicular Technology 27 (1978) 57-74, doi: 10.1109/T-VT.1978.23724.
[13] D. Brélaz, New methods to color the vertices of a graph, Communications of the ACM 22 (1979) 251-256, doi: 10.1145/359094.359101.
[14] S. Burer, R.D.C. Monteiro and Y. Zhang, Interior-point algorithms for semidefinite programming based on a nonlinear programming formulation, Technical Report TR 99-27, Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005, Dec. 1999.
[15] A. Caminada, CNET France Telecom frequency assignment benchmark, URL: http://www.cs.cf.ac.uk/User/Steve.Hurley/f_bench.htm, 2000
[16] K.-N. Chang and S. Kim, Channel allocation in cellular radio networks, Computers and Operations Research 24 (1997) 849-860, doi: 10.1016/S0305-0548(96)00098-6.
[17] D. Costa, On the use of some known methods for t-colourings of graphs, Annals of Operations Research 41 (1993) 343-358, doi: 10.1007/BF02023000.
[18] M.B. Cozzens and F.S. Roberts, T-colorings of graphs and the channel assignment problem, Congr. Numer. 35 (1982) 191-208.
[19] G. Dueck and T. Scheuer, Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing, J. Computational Physics (1990) 161-175, doi: 10.1016/0021-9991(90)90201-B.
[20] A. Eisenblätter, Frequency Assignment in GSM Networks: Models, Heuristics, and Lower Bounds (Cuvillier Verlag, 2001).
[21] A. Eisenblätter and A.M.C.A, Koster, FAP web-A website devoted to frequency assignment, URL: http://fap.zib.de, 2000.
[22] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.
[23] M. Fischetti, C. Lepschy, G. Minerva, G. Romanin-Jacur and E. Toto, Frequency assignment in mobile radio systems using branch-and-cut techniques, European Journal of Operational Research 123 (2000) 241-255, doi: 10.1016/S0377-2217(99)00254-4.
[24] A. Frieze and M. Jerrum, Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION, Algorithmica 18 (1997) 67-81, doi: 10.1007/BF02523688.
[25] M. Grötschel, L. Lovász and A. Schrijver, Polynomial algorithms for perfect graphs, Annals of Discrete Math. 21 (1984) 325-356.
[26] M. Grötschel, L. Lovász and A. Schrijver, Geometric Algorithms and Combinatorial Optimization (Springer-Verlag, 1988).
[27] W.K. Hale, Frequency assignment: Theory and applications, Proceedings of the IEEE 68 (1980) 1497-1514, doi: 10.1109/PROC.1980.11899.
[28] M. Hellebrandt and H. Heller, A new heuristic method for frequency assignment, Technical Report TD(00) 003, COST 259 (Valencia, Spain, Jan, 2000).
[29] C. Helmberg, SBmethod - A C++ implementation of the spectral bundle method, manuel to version 1,1, Technical Report 00-35, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) (Berlin, Germany, 2000).
[30] C. Helmberg, Semidefinite programming for combinatorial optimization, Technical Report 00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) (Berlin, Germany, 2000), Habilitation TU Berlin.
[31] S. Hurley, D.H. Smith and S.U. Thiel, FASoft: A system for discrete channel frequency assignment, Radio Science 32 (1997) 1921-1939, doi: 10.1029/97RS01866.
[32] J. Janssen and K. Kilakos, Polyhedral analysis of channel assignment problems: (i) tours, Technical Report CDAM-96-17 (London School of Economics, 1996).
[33] J. Janssen and K. Kilakos, An optimal solution to the ``Philadelphia'' channel assignment problem, IEEE Transactions on Vehicular Technology 48 (3) (1999) 1012-1014, doi: 10.1109/25.765037.
[34] B. Jaumard, O. Marcotte and C. Meyer, Mathematical models and exact methods for channel assignment in cellular networks, in: B. Sansáo and P. Soriano, eds, Telecommunications Network Planning, Chapter 13 (Kluwer Academic Publishers, Boston, 1999) 239-255, doi: 10.1007/978-1-4615-5087-7₁3.
[35] D.S. Johnson, Worst case behaviour of graph colouring algorithms, Congr. Numer. 10 (1974) 513-527.
[36] M. Jünger, G. Reinelt and G. Rinaldi, Network Models, Volume 7 of Handbooks in Operations Research and Management Science, Chapter The travelling salesman problem (Elsevier Science B.V., 1995) 225-330.
[37] D. Karger, R. Motwani and M. Sudan, Approximate graph coloring by semidefinite programming, Journal of the ACM 45 (2) (1998) 246-265, doi: 10.1145/274787.274791.
[38] M. Karoński, Random graphs, in: R. Graham, M. Grötschel and L. Lovász, eds, Handbook of Combinatorics, Volume 1, Chapter 6 (Elsevier Science B.V., 1995) 351-380.
[39] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds, Complexity of Computer Computations (Plenum Press, New York, 1972) 85-103.
[40] A.W.J. Kolen, A genetic algorithm for frequency assignment, (Technical report, Maastricht University, 1999). Available at http://www.unimaas.nl/~akolen/.
[41] A.M.C.A. Koster, Frequency Assignment-Models and Algorithms (PhD Thesis, Maastricht University, 1999). Available at http://www.zib.de/koster/thesis.html.
[42] A.M.C.A, Koster, C.P.M. van Hoesel and A.W.J. Kolen, Lower bounds for minimum interference frequency assignment problems, Technical Report RM 99/026 (Maastricht University, 1999). Available at http://www.zib.de/koster/.
[43] R. Mathar and J. Mattfeldt, Channel assignment in cellular radio networks, IEEE Transactions on Vehicular Technology 42 (1993) 647-656, doi: 10.1109/25.260746.
[44] B.H. Metzger, Spectrum management technique, Fall 1970, Presentation at 38th National ORSA meeting (Detroit, MI).
[45] R.A. Murphey, P.M. Pardalos and M.G.C. Resende, Frequency assignment problems, in: D.-Z. Du and P.M. Pardalos, eds, Handbook of combinatorial optimization, volume Supplement Volume A (Kluwer Academic Publishers, 1999).
[46] A. Raychaudhuri, Intersection Assignments, T-Colourings and Powers of Graphs (PhD Thesis, Rutgers University, 1985).
[47] ROADEF challenge 2001. URL: http://www.prism.uvsq.fr/~ vdc/ROADEF/ CHALLENGES/2001/, 2000.
[48] F.S. Roberts, On the mobile radio frequency assignment problem and the traffic light phasing problem, Annals of New York Academy of Sciences 319 (1979) 466-483, doi: 10.1111/j.1749-6632.1979.tb32824.x.
[49] F.S. Roberts, T-colorings of graphs: Recent results and open problems, Discrete Math. 93 (1991) 229-245, doi: 10.1016/0012-365X(91)90258-4.
[50] K.N. Sivarajan, R.J. McEliece and J.W. Ketchum, Channel assignment in cellular radio, in: Proceedings of the 39th IEEE Vehicular Technology Conference (1989) 846-850, doi: 10.1109/VETEC.1989.40173.
[51] S. Stahl, n-tuple colorings and associated graphs, J. Combin. Theory 20 (B) (1976) 185-203.
[52] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Technical report, Communications Research Laboratory (McMaster University, Hamilton, Canada, 1998). Available at: http://www.unimaas.nl/~ sturm/.
[53] B.A. Tesman, T-colorings, list T-colorings, and set T-colorings of graphs (PhD Thesis, Department of Mathematics, Rutgers University, 1989).
[54] B.A. Tesman, Set T-colorings, Congr. Numer. 77 (1990) 229-242.
[55] B.A. Tesman, List T-colorings, Discrete Applied Mathematics 45 (1993) 277-289, doi: 10.1016/0166-218X(93)90015-G.
[56] B. Toft, Colouring, stable sets and perfect graphs, in: R. Graham, M. Grötschel and L. Lovász, eds, Handbook of Combinatorics, Volume 1, Chapter 4 (Elsevier Science B.V., 1995) 233-288.
[57] C. Valenzuela, S. Hurley and D.H. Smith, A permutation based genetic algorithm for minimum span frequency assignment, Lecture Notes in Computer Science 1498 (1998) 907-916, doi: 10.1007/BFb0056932.
[58] V.G. Vizing, Critical graphs with given chromatic class (Russian), Diskret, Analiz 5 (1965) 9-17.
[59] W. Wang and C.K. Rushforth, An adaptive local-search algorithm for the channel-assignment problem (CAP), IEEE Transactions on Vehicular Technology 45 (1996) 459-466, doi: 10.1109/25.533761.
[60] J.A. Zoellner and C.L. Beall, A breakthrough in spectrum conserving frequency assignment technology, IEEE Transactions on Electromagnetic Compatiblity 19 (1977) 313-319, doi: 10.1109/TEMC.1977.303601.