Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_1_a3, author = {Broere, Izak and Bucko, Jozef and Mih\'ok, Peter}, title = {Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {31--37}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/} }
TY - JOUR AU - Broere, Izak AU - Bucko, Jozef AU - Mihók, Peter TI - Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties JO - Discussiones Mathematicae. Graph Theory PY - 2002 SP - 31 EP - 37 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/ LA - en ID - DMGT_2002_22_1_a3 ER -
%0 Journal Article %A Broere, Izak %A Bucko, Jozef %A Mihók, Peter %T Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties %J Discussiones Mathematicae. Graph Theory %D 2002 %P 31-37 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/ %G en %F DMGT_2002_22_1_a3
Broere, Izak; Bucko, Jozef; Mihók, Peter. Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] I. Broere and J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87.
[3] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043.
[4] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colourable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4.
[5] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58.
[6] P. Mihók, Unique factorization theorem, Discuss. Math. Graph Theory 20 (2000) 143-154, doi: 10.7151/dmgt.1114.