Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 31-37.

Voir la notice de l'article provenant de la source Library of Science

Let ₁,₂,...,ₙ be graph properties, a graph G is said to be uniquely (₁,₂, ...,ₙ)-partitionable if there is exactly one (unordered) partition V₁,V₂,...,Vₙ of V(G) such that G[V_i] ∈ _i for i = 1,2,...,n. We prove that for additive and induced-hereditary properties uniquely (₁,₂,...,ₙ)-partitionable graphs exist if and only if _i and _j are either coprime or equal irreducible properties of graphs for every i ≠ j, i,j ∈ 1,2,...,n.
Keywords: induced-hereditary properties, reducibility, divisibility, uniquely partitionable graphs.
@article{DMGT_2002_22_1_a3,
     author = {Broere, Izak and Bucko, Jozef and Mih\'ok, Peter},
     title = {Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Bucko, Jozef
AU  - Mihók, Peter
TI  - Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 31
EP  - 37
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/
LA  - en
ID  - DMGT_2002_22_1_a3
ER  - 
%0 Journal Article
%A Broere, Izak
%A Bucko, Jozef
%A Mihók, Peter
%T Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 31-37
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/
%G en
%F DMGT_2002_22_1_a3
Broere, Izak; Bucko, Jozef; Mihók, Peter. Criteria for of the existence of uniquely partitionable graphs with respect to additive induced-hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a3/

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[2] I. Broere and J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mt. Math. Publ. 18 (1999) 79-87.

[3] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043.

[4] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colourable graphs, J. Combin. Theory 6 (1969) 264-270, doi: 10.1016/S0021-9800(69)80086-4.

[5] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58.

[6] P. Mihók, Unique factorization theorem, Discuss. Math. Graph Theory 20 (2000) 143-154, doi: 10.7151/dmgt.1114.