Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_1_a14, author = {Semani\v{s}in, Gabriel}, title = {On generating sets of induced-hereditary properties}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {183--192}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a14/} }
Semanišin, Gabriel. On generating sets of induced-hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 183-192. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a14/
[1] B. Bollobás and A.G. Thomason, Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nesetril, eds., The mathematics of Paul Erdős, II, Algorithms and Combinatorics 14 (Springer-Verlag, 1997) 70-78.
[2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 42-69.
[4] I. Broere and J.Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mountains Math. Publications 18 (1999) 79-87.
[5] G. Chartrand, D. Geller and S. Hedetniemi, Graphs with forbidden subgraphs, J. Combin. Theory (B) 10 (1971) 12-41, doi: 10.1016/0095-8956(71)90065-7.
[6] E.J. Cockayne, Color classes for r-graphs, Canad. Math. Bull. 15 (3) (1972) 349-354, doi: 10.4153/CMB-1972-063-2.
[7] E.J. Cockayne, G.G. Miller and G. Prins, An interpolation theorem for partitions which are complete with respect to hereditary properties, J. Combin. Theory (B) 13 (1972) 290-297, doi: 10.1016/0095-8956(72)90065-2.
[8] M. Frick, A survey of (m,k)-colorings, in: J. Gimbel c.a, ed., Quo Vadis, Graph Theory? A source book for challenges and directions, Annals of Discrete Mathematics 55 (North-Holland, Amsterdam, 1993) 45-57.
[9] S.T. Hedetniemi, On hereditary properties of graphs, J. Combin. Theory (B) 14 (1973) 94-99, doi: 10.1016/S0095-8956(73)80009-7.
[10] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
[11] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58.
[12] P. Mihók, Unique factorization theorem, Discuss. Math. Graph Theory 20 (2000) 143-154, doi: 10.7151/dmgt.1114.
[13] P. Mihók, G. Semanišin and R. Vasky, Additive and Hereditary Properties of Graphs are Uniquely Factorizable into Irreducible Factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:144::AID-JGT5>3.0.CO;2-O
[14] J. Mitchem, Maximal k-degenerate graphs, Utilitas Math. 11 (1977) 101-106.