Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2002_22_1_a12, author = {Randerath, Bert and Vestergaard, Preben}, title = {On well-covered graphs of odd girth 7 or greater}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {159--172}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a12/} }
TY - JOUR AU - Randerath, Bert AU - Vestergaard, Preben TI - On well-covered graphs of odd girth 7 or greater JO - Discussiones Mathematicae. Graph Theory PY - 2002 SP - 159 EP - 172 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a12/ LA - en ID - DMGT_2002_22_1_a12 ER -
Randerath, Bert; Vestergaard, Preben. On well-covered graphs of odd girth 7 or greater. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a12/
[1] M.O. Albertson, L. Chan and R. Haas, Independence and graph homomorphisms, J. Graph Theory 17 (1993) 581-588, doi: 10.1002/jgt.3190170503.
[2] X. Baogen, E. Cockayne, T.W. Haynes, S.T. Hedetniemi and Z. Shangchao, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1-10, doi: 10.1016/S0012-365X(99)00251-4.
[3] C. Berge, Regularizable graphs, Ann. Discrete Math. 3 (1978) 11-19, doi: 10.1016/S0167-5060(08)70493-X.
[4] V. Chvátal and P.J. Slater, A note on well-covered graphs, Ann. Discrete Math. 55 (1993) 179-182, doi: 10.1016/S0167-5060(08)70387-X.
[5] O. Favaron, Very well-covered graphs, Discrete Math. 42 (1982) 177-187, doi: 10.1016/0012-365X(82)90215-1.
[6] A. Finbow and B. Hartnell, A game related to covering by stars, Ars Combin. 16 (A) (1983) 189-198.
[7] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, J. Combin. Theory (B) 57 (1993) 44-68, doi: 10.1006/jctb.1993.1005.
[8] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-covered graphs which contain neither 4- nor 5-cycles, J. Graph Theory 18 (1994) 713-721, doi: 10.1002/jgt.3190180707.
[9] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079.
[10] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, 1962).
[11] C. Payan and N.H. Xuong, Domination-balanced graphs. J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104.
[12] M.R. Pinter, A class of planar well-covered graphs with girth four, J. Graph Theory 19 (1995) 69-81, doi: 10.1002/jgt.3190190108.
[13] M.R. Pinter, A class of well-covered graphs with girth four, Ars Combin. 45 (1997) 241-255.
[14] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98, doi: 10.1016/S0021-9800(70)80011-4.
[15] M.D. Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993) 253-287, doi: 10.1080/16073606.1993.9631737.
[16] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math. 191 (1998) 159-169, doi: 10.1016/S0012-365X(98)00103-4.
[17] R.S. Sankaranarayanan and L.K. Stewart, Complexity results for well-covered graphs, Networks 22 (1992) 247-262, doi: 10.1002/net.3230220304.
[18] J. Staples, Ph. D. dissertation (Vanderbilt University, Nashville, TN, 1975).
[19] L. Szamkołowicz, Sur la classification des graphes en vue des propriétés de leurs noyaux, Prace Nauk. Inst. Mat. i Fiz. Teoret., Politechn. Wrocław., Ser. Stud. Mater. 3 (1970) 15-21.
[20] J. Topp and L. Volkmann, On domination and independence numbers of graphs, Resultate Math. 17 (1990) 333-341.
[21] W.T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc. 4 (1953) 922-931.