On well-covered graphs of odd girth 7 or greater
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 159-172.

Voir la notice de l'article provenant de la source Library of Science

A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [14] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. One of the most challenging problems in this area, posed in the survey of Plummer [15], is to find a good characterization of well-covered graphs of girth 4. We examine several subclasses of well-covered graphs of girth ≥ 4 with respect to the odd girth of the graph. We prove that every isolate-vertex-free well-covered graph G containing neither C₃, C₅ nor C₇ as a subgraph is even very well-covered. Here, a isolate-vertex-free well-covered graph G is called very well-covered, if G satisfies α(G) = n/2. A vertex set D of G is dominating if every vertex not in D is adjacent to some vertex in D. The domination number γ(G) is the minimum order of a dominating set of G. Obviously, the inequality γ(G) ≤ α(G) holds. The family _γ=α of graphs G with γ(G) = α(G) forms a subclass of well-covered graphs. We prove that every connected member G of _γ=α containing neither C₃ nor C₅ as a subgraph is a K₁, C₄,C₇ or a corona graph.
Keywords: well-covered, independence number, domination number, odd girth
@article{DMGT_2002_22_1_a12,
     author = {Randerath, Bert and Vestergaard, Preben},
     title = {On well-covered graphs of odd girth 7 or greater},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {159--172},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a12/}
}
TY  - JOUR
AU  - Randerath, Bert
AU  - Vestergaard, Preben
TI  - On well-covered graphs of odd girth 7 or greater
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 159
EP  - 172
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a12/
LA  - en
ID  - DMGT_2002_22_1_a12
ER  - 
%0 Journal Article
%A Randerath, Bert
%A Vestergaard, Preben
%T On well-covered graphs of odd girth 7 or greater
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 159-172
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a12/
%G en
%F DMGT_2002_22_1_a12
Randerath, Bert; Vestergaard, Preben. On well-covered graphs of odd girth 7 or greater. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 159-172. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a12/

[1] M.O. Albertson, L. Chan and R. Haas, Independence and graph homomorphisms, J. Graph Theory 17 (1993) 581-588, doi: 10.1002/jgt.3190170503.

[2] X. Baogen, E. Cockayne, T.W. Haynes, S.T. Hedetniemi and Z. Shangchao, Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000) 1-10, doi: 10.1016/S0012-365X(99)00251-4.

[3] C. Berge, Regularizable graphs, Ann. Discrete Math. 3 (1978) 11-19, doi: 10.1016/S0167-5060(08)70493-X.

[4] V. Chvátal and P.J. Slater, A note on well-covered graphs, Ann. Discrete Math. 55 (1993) 179-182, doi: 10.1016/S0167-5060(08)70387-X.

[5] O. Favaron, Very well-covered graphs, Discrete Math. 42 (1982) 177-187, doi: 10.1016/0012-365X(82)90215-1.

[6] A. Finbow and B. Hartnell, A game related to covering by stars, Ars Combin. 16 (A) (1983) 189-198.

[7] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, J. Combin. Theory (B) 57 (1993) 44-68, doi: 10.1006/jctb.1993.1005.

[8] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-covered graphs which contain neither 4- nor 5-cycles, J. Graph Theory 18 (1994) 713-721, doi: 10.1002/jgt.3190180707.

[9] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079.

[10] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, 1962).

[11] C. Payan and N.H. Xuong, Domination-balanced graphs. J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104.

[12] M.R. Pinter, A class of planar well-covered graphs with girth four, J. Graph Theory 19 (1995) 69-81, doi: 10.1002/jgt.3190190108.

[13] M.R. Pinter, A class of well-covered graphs with girth four, Ars Combin. 45 (1997) 241-255.

[14] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98, doi: 10.1016/S0021-9800(70)80011-4.

[15] M.D. Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993) 253-287, doi: 10.1080/16073606.1993.9631737.

[16] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math. 191 (1998) 159-169, doi: 10.1016/S0012-365X(98)00103-4.

[17] R.S. Sankaranarayanan and L.K. Stewart, Complexity results for well-covered graphs, Networks 22 (1992) 247-262, doi: 10.1002/net.3230220304.

[18] J. Staples, Ph. D. dissertation (Vanderbilt University, Nashville, TN, 1975).

[19] L. Szamkołowicz, Sur la classification des graphes en vue des propriétés de leurs noyaux, Prace Nauk. Inst. Mat. i Fiz. Teoret., Politechn. Wrocław., Ser. Stud. Mater. 3 (1970) 15-21.

[20] J. Topp and L. Volkmann, On domination and independence numbers of graphs, Resultate Math. 17 (1990) 333-341.

[21] W.T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc. 4 (1953) 922-931.